
 

1 

 

 

Non-Intrusive Measurement Techniques for Flow Characterization of 

Hypersonic Wind Tunnels 
 

P. M. Danehy, J. Weisberger, 

NASA Langley Research Center, Hampton Virginia, 23681, USA 

 

C. Johansen, 

University of Calgary, Calgary, AB, T2N 1N4, CANADA 

 

D. Reese, T. Fahringer,  

National Institute of Aerospace, Hampton Virginia, 23681 USA 

 

N. J. Parziale, 

Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA 

 

C. Dedic, 

University of Virginia, Charlottesville, Virginia 22911, USA 

 

J. Estevadeordal 

North Dakota State University, Fargo, North Dakota, 58108, USA 

 

and B. A. Cruden, 

AMA Inc at NASA Ames Research Center, Moffett Field California, 94035, USA 

 

ABSTRACT 

This manuscript describes the wide variety of optical measurement techniques for characterizing the 

flow in hypersonic wind tunnels.  The introduction briefly describes different types of hypersonic wind 

tunnels, why they are used, and typical freestream conditions including fluctuating quantities.  

Description of these conditions defines the challenge for measurement techniques which have varying 

degrees of accuracy and precision, and work only in certain temperature, density and/or speed regimes.  

The rest of the manuscript is broken up into sections, by measurement technique.  Each technique is 

described and then several examples are provided.  The concluding chapter compares and contrasts 

different aspects of the measurement techniques including accuracy, precision, spatial resolution and 

temporal resolution.   
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1. Introduction: The need for characterization of hypersonic wind tunnels 

1.1. Challenges in computing the physics & chemistry of hypersonic flight 

Hypersonic vehicles fly at thousands of meters per second.  At such high speeds, these vehicles impart 

energy to and heat the surrounding air.  The air, in turn, heats the vehicle.  The faster the vehicle, the 

hotter the air and the more difficult to keep the vehicle from degrading thermally and structurally.  These 

high temperatures result in numerous fluid mechanical phenomena that are insignificant in subsonic 

through supersonic flight.  In addition to laminar-to-turbulent transition, turbulence, compressibility, flow 

separation, and combustion, which are typical fluid mechanical “physics” challenges with subsonic 

through supersonic flight, hypersonic flight has the additional complications of so called “real gas effects” 

including dissociation, ionization, vibrational and electronic excitation, non-equilibrium chemistry, and 

vibrational non-equilibrium.   Furthermore, the vehicle’s response to the high temperature environment 

results in degradation to the materials through processes including oxidation, nitridation, and spallation.  

Effects such as catalycity and radiative heat transfer are also important as they affect heat transfer to the 

vehicle surface.     

To successfully design hypersonic vehicles these phenomena all need to be understood to a sufficient 

level of detail to allow quantitative prediction of aerodynamic, aerothermodynamic, thermo-structural, 

and flow-control behaviors.   However, the physics and chemistry of these phenomena and the 

interactions between these phenomena is complex and difficult to compute exactly.  Typically, the 

physics and chemistry are modelled, sometimes simplistically.  Examples of models include turbulence 

models and reduced chemistry models which simplify hydrocarbon chemistry into a limited number of 

solvable equations.  Models for various aspects of non-equilibrium are also used. These models are 

embedded in the codes used to design hypersonic vehicles, but many of these models are oversimplified 

and/or untested at the conditions where they are being use, especially in the field of hypersonics.  While 

sophisticated flow physics and chemistry models are sometimes available, they are often overlooked 

(especially by industrial applications) because of high computational costs.  Either way, whether low- or 

high-fidelity models are being used to compute hypersonic flow, detailed experimental data is required to 

validate these codes and gain confidence in their use for predicting flight.   

When computational methods are used to compute high-speed flows and disagreement is found 

between the experiments and the computations, two possibilities exist: either the computational method is 

wrong or the method could be correct but didn’t simulate the same experiment.  That is, the initial and 

boundary conditions may have been incorrectly specified or implemented.  To eliminate the second 

option, accurate and precise flowfield data is critically needed especially in the freestreams of hypersonic 

facilities.  Measuring facility freestream flow is the main focus of this manuscript.  In addition to the 
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mean quantities, both the fluctuations in these mean quantities and run-to-run repeatability are of great 

importance.  As stated in the CFD Vision 2030 report: “Variability and uncertainty of inputs (boundary 

and initial conditions, parameters, etc.) to fluid dynamic problems are largely unquantified.”
1
  Non-

intrusive optical measurement technologies have the potential to enrich and complement conventional 

measurement techniques used to characterize facility freestreams.  (N.B.: Conventional, typically probe- 

or surface-based instrumentation are outside the scope of this manuscript.) 

1.2. The need for different types of hypersonic facilities 

Unfortunately, it is not possible to reproduce all of the various important effects of hypersonic flight 

(e.g. flight velocity, thermodynamic conditions, real gas effects, etc.) in a single ground test facility.  

Instead, different types of facilities have been developed to simulate different aspects of hypersonic flight 

on the ground.  Many wind tunnels run up against some physical limit, such as the condensation of the 

freestream gas at low temperatures or material limits in high temperature tunnels.  For example, 

expanding room temperature air to ~Mach 4 drops the static temperature low enough to cause 

condensation of the air, so to achieve hypersonic flow (defined here as Mach > 5, though other aspects 

such as real gas effects are also important aspects of hypersonic flight) the air must be heated in some 

way.  Different facilities, designed to test different aspects of hypersonic flight, use different methods of 

heating the gas depending on factors such as cost, run-duration needed, physical scale required, 

cleanliness of the flow, turn-around-time between runs, etc. Methods of heating the gas include electrical 

heating, combustion, electric-arc, and shock-wave heating.   An important distinction in this discussion is 

the difference between the aerodynamic Mach number and the enthalpy associated with an actual vehicle 

flying at a certain Mach number.  In flight these states are equivalent but in wind tunnel tests they can be 

unequal. For example, a specification of Mach 6 might indicate either the aerodynamic Mach number 

being 6 or the enthalpy associated with flight at that Mach number at a particular altitude. If Mach 

number of a facility’s operating condition is specified, it should be clarified whether this refers to the 

aerodynamic Mach number or the enthalpy.  Aerodynamics and aeroheating facilities often just simulate 

the aerodynamic Mach number (usually defined by the area ratio of the facility nozzle), while combustion 

facilities and materials testing facilities usually need to simulate the correct enthalpy associated with 

flight at a certain Mach number but may not require a specific aerodynamic Mach number.  This flow 

enthalpy is determined by the flowrate and the amount of heat addition.  For example, a Mach 7 enthalpy 

flow can pass through a Mach 2 nozzle to simulate some part of a hypersonic vehicle such as the 

combustion chamber. 

Below, several types of hypersonic facilities are briefly described along with at least one example cited 

and a brief description of the primary types of data that are obtained from these facilities.  The list is 
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incomplete but it does help to show the range of types of facilities and challenges associated with optical 

instrumentation.   As will be shown from reviewing several types of facilities and by viewing the typical 

operating conditions of a few different facilities, there is an enormous range of possible freestream 

conditions that these hypersonic facilities can produce.  Knowledge of the basic operating principles and 

conditions produced by these facilities is thusly important for designing measurement systems; a wide 

range of different instrumentation is required to accommodate the broad operational envelopes 

encountered in these facilities.  

1.3. Brief description of several different types of hypersonic facilities  

In 2002, Lu and Marren surveyed and provide detailed descriptions of many different types of 

hypersonic wind tunnels and their features and operating conditions.
2
  More recently, Chazot and Panerai 

reviewed high-enthalpy facilities and plasma wind tunnels.
3
  These reference provide much more detailed 

information about hypersonic flow facilities.  Still a quick review is provided herein.  Few references are 

given in this section.  Most of the tunnels described below can be found in Refs. 2 and 3: 

 Blowdown air tunnels, such as the NASA Langley 20” Mach 6 and 31” Mach 10 tunnels are used 

primarily for aeroheating and aerodynamic studies.  These tunnels typically have a high pressure 

reservoir upstream and a vacuum sphere downstream of the nozzle and test section.  They have 

run durations of about a minute, limited typically by the size of the vacuum sphere the flow is 

filling.  The air is electrically heated to temperatures just high enough to avoid condensation in 

the freestream.  

 Blowdown nitrogen tunnels, such as AEDC Tunnel 9 can heat the gas to higher temperature than 

air blowdown tunnels and thus can achieve higher Mach numbers before the onset of 

condensation.  Such tunnels are typically electrically heated and have run durations on the order 

of 10’s of seconds.  AEDC Tunnel 9 has nozzles with Mach numbers between 7 and 14. 

 Ludwieg tubes are a class of tunnels where a supersonic nozzle is mounted on the end of a long 

tube.  The nozzle and tube are separated by a diaphragm and high pressure gas is put in the tube 

while the nozzle and an attached vacuum chamber are evacuated.  When the diaphragm is 

ruptured flow begins through the nozzle and test section into the vacuum chamber.  Flow 

continues at a steady rate until the expansion wave propagates to the end of the tube and returns.  

Such tubes can be made to have “quiet flow” with minimal turbulence.  The Boeing/AFOSR 

Mach-6 Quiet Tunnel at Purdue University is such a quiet hypersonic tunnel.  This tunnel was 

primarily built to study the effects of laminar-to-turbulent transition.  Run durations are typically 

~10 sec.  Again, heating the tunnel gas allows higher Mach number operation.   Ludwieg tubes 

are relatively less expensive to operate than other types of tunnels and are used widely at 

universities.   

 Shock tubes have a diaphragm separating two sections of tube, the higher pressure side called the 

driver gas and the lower pressure side called the driven gas.  When the diaphragm is ruptured a 

shock wave passes into the driven gas, elevating the temperature, density and velocity of the gas 

to carefully controlled values which can then be used to study various phenomena such as 

chemical kinetics
4
 or particle drag.

5
  The shock wave can also be allowed to reflect off the end 
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wall of the tunnel and pass back through the gas, further elevating the temperature and density 

and bringing the gas nearly to rest.  This process allows further phenomena to be studied.  

Various methods are used to increase the temperature of the driver gas which increases the shock 

wave speed and produced higher temperatures and velocities.  Examples are electrical heating, 

electric arc heating,
6
 and heating the gas through isentropic compression by using a free piston.

7
  

 Shock tunnels literally extend shock tubes by placing a nozzle at the end of the terminal end of 

the flow path.  The gas at this location, which has been heated and pressurized by the reflected 

shock, provides a short duration, relatively steady, high temperature, high density reservoir to 

flow through the nozzle.  Typically the throat of the nozzle is smaller than the shock tube 

diameter so the conditions upstream of the nozzle stay relatively constant for a few tens or 

hundreds of milliseconds resulting in steady, high-enthalpy flow through the nozzle.   By varying 

the strength of the shock, different flow enthalpies can be obtained. Varying the area ratio of the 

nozzle produces different aerodynamic Mach numbers.  Shock tunnels, including free-piston 

shock tunnels, can produce high-enthalpy flow suitable for studying real-gas effects.  By 

changing the gas (for example running with air or nitrogen or argon or mixtures thereof) different 

physics can be isolated and studied.  Several high-enthalpy free piston shock tunnels exist and are 

in use around the world, including T4 (Australia), T5 (USA), HEG (Germany), and HIEST 

(Japan).    In shock tunnels, as the enthalpy is increased the stagnated gas becomes progressively 

more dissociated, and unfortunately this gas does not recombine in the nozzle. The resulting 

freestream gas contains undesirable atomic and molecular contaminants (such as NO) as well as 

metallic species from the facility.   

 Expansion tubes and tunnels were developed to explore even higher enthalpy flows than shock 

tubes and shock tunnels.  An expansion tube is a variation of a shock tube using an extra 

diaphragm that creates an unsteady expansion to produce a relatively short flow duration that has 

high enthalpy but relatively less dissociation since the gas was never stagnated like in a shock 

tube or tunnel.  This expanded gas can be studied or it can be further expanded by a nozzle to 

increase the Mach number.  Examples of large expansion tubes and tunnels are the X3 tunnel in 

Australia and the Lens XX tunnel in the USA.   

 Combustion heated tunnels are a class of tunnels which use hydrogen or a hydrocarbon fuel to 

heat the test fluid.  Typically oxygen is consumed and water (and sometimes CO2) is produced by 

these facilities.  In combustion applications the oxygen must be replenished and mixed with the 

test fluid to enable testing of high enthalpy combustion components such as fuel injectors or 

engines.  The presence of water or carbon dioxide in the incoming flow must be understood and 

taken into account in analyzing test results.  Examples of large combustion heated tunnels in the 

USA are APTU and the NASA Langley 8-Foot High Temperature Tunnel.  These facilities are 

generally larger and more expensive to build, maintain and operate than many of the other 

facilities described above.  

 Arc-Jet facilities, or closely related plasmatrons, are a class of facilities where an electric arc is 

used to heat a continually flowing the test gas.  When running in air, the arc generates nitric oxide 

which stays mostly in a chemically frozen state through the nozzle and, again, must be taken into 

account when performing arc jet experiments.  The high-enthalpy air can either flow directly over 

a test article or can pass through a converging diverging nozzle and pass supersonically or 

hypersonically over a test sample.  Arc jets are used to study supersonic combustion, for example 
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at NASA Langley’s AHSTF in the USA and also for materials testing, for example at NASA 

Ames’ IHF arc jet, also in the USA.  The 1200 kW Induction Plasmatron at VKI in Belgium uses 

an inductively coupled plasma technology to reduce gas contamination from electrodes. Again, 

these facilities are relatively more expensive to build, maintain and operate than many of the 

facilities described above.   
 

1.4. Freestream conditions produced by hypersonic facilities 

Table 1.1 shows typical operating conditions from several different types of facilities.  To limit the 

quantity of data in the table, just a few example facility types are shown and a single “typical” condition 

is shown for each type of facility.  Most of these facilities can operate over a wide range of pressures to 

simulate different Reynolds numbers and some can operate over a wide range of enthalpies.  The point of 

this table is to show the wide range of conditions produced to study different aspects of hypersonic flow.   

As shown in the table, the operating conditions can vary wildly depending on the type of facility.  

Freestream temperatures vary from roughly 50 K to over 2000 K (ranging by a factor of 40).  Freestream 

pressures vary from 0.37 to 50 kPa (ranging by a factor of 135).  Velocities vary from less than 1000 m/s 

to 7000 m/s (factor of 7).  The densities are all well below atmospheric conditions (1.17 kg/m
3
), and vary 

by a factor of about 500.  These numbers are critically important for choosing which measurement 

techniques to use.  Some techniques only work well in certain ranges of conditions.  For example, 

Rayleigh scattering works best at high densities.  Other techniques may only work in a certain 

temperature range.  Table 1 will help establish connections between the performance of certain 

  Mach Enthalpy Velocity Pstatic Tstatic Density 

Facility Type Number  (MJ/kg) (m/s) (kPa) (K) (kg/m3) 

VKI Mach 6 H3 Blowdown Air 6 --  939 1.28 61.0 0.073 

AEDC Tunnel 9 Blowdown N2 13.2 1.9 1920 0.5 51 0.003 

Purdue Boeing 
Mach 6 Quiet 
Tunnel 

Ludwig Tube 5.93 --  872.7 0.37 53.9 0.024 

EAST Shock Tube 4 94 9400 30 10000 0.005 

T5 Free Piston 
Shock Tunnel 

5.1 11.9 4320 34 1800 0.062 

Lens XX Expansion 
Tunnel 

7.3 20.7 6086 3.68 1881 0.0068 

NASA Ames 
IHF 

Arc Jet 4 20 4000 3 1500 0.004 

Table 1.1.  Freestream conditions from selected facilities.  While most of these facilities operate over a 

range of conditions, typically varying Renolds and Mach numbers and/or enthalpies, only a single 

“typical” operating condition is shown here for each facility. 
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measurement capabilities and the actual conditions where they will be used.  An advantage of having data 

like that shown in Table 1.1 is that instrument developers may use this data to try to simulate similar 

conditions in the laboratory to optimize a technique before bringing it to the facility. 

Facility Type U'/U T'/T m'/m (rho'/rho) P'/P 

VKI Mach 6 H3 Blowdown Air 0.6% 0.8% 5.2% 1.0% 

Purdue Boeing 
Mach 6 Quiet 
Tunnel 

Ludwig Tube -- -- 0.2% 0.01% 

T5 Free Piston Shock 
Tunnel 

 --  -- <1% @ high 
frequency 

--  

 

 

Another consideration for measurement technique development for freestream quantification is the 

fluctuations in the freestream.  If it is desired to measure the freestream fluctuations it is important to have 

a rough idea of the expected magnitude of these fluctuations, so that the precision of potential 

measurement techniques can be assessed for their potential to resolve the facility freestream fluctuations.  

Ideally an instrument’s measurement precision should be better (smaller) than the fluctuations being 

measured.    Table 2 shows the measured, predicted, or inferred freestream fluctuations found in some of 

the tunnels shown in Table 1. The freestream fluctuations in the freestream of conventional (non-quiet) 

tunnels is on the order of 1%.  To resolve these fluctuations instrumentation should have measurement 

precision better than 1%.  Quiet tunnels have even lower fluctuations that are fractions of a percent.  As 

we shall see, few optical measurement techniques have demonstrated the ability to measure such small 

freestream fluctuations.  Still, if the fluctuating quantities cannot be measured non-intrusive techniques 

can still provide valuable mean flow data.  For example, mean flow data can be useful in establishing run-

to-run repeatability or for validating computations of the facility and nozzle flow.  Finally, they can 

provide valuable boundary conditions for subsequent computations.   

1.5. Hypersonic nozzle flow and freestream 

The flow of gas through hypersonic nozzles is described in detail elsewhere.
8,9

  A brief qualitative 

introduction is given here.  Figure 1.1a shows a low-enthalpy hypersonic nozzle flow that can be assumed 

to be in thermodynamic equilibrium.  These conditions would be representative of facilities that have 

reservoir temperatures well below 1000 K, which is roughly where N2 and O2 begin to have significant 

populations in their excited vibrational states and coincidentally is roughly where O2 begins to dissociate 

and produce both O-atoms and nitric oxide (NO).  As the gas expands through the nozzle, the 

temperature, pressure, and density all decrease smoothly until the test section is reached where, ideally, 

steady flow freestream conditions occur.  Low-temperature reservoirs lead to low temperature freestream 

Table 1.2. Freestream fluctuation measured or computed in selected facilities. 
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flows: commonly on the order of 50 K (limited by the condensation of the components of air).  Such 

flows can be computed successfully assuming laminar flow,
10

 though laminar computations ignore the 

turbulent boundary layers building on the nozzle walls as well as laminar-to-turbulent transition that 

occurs somewhere along the nozzle walls.  Corrections based on conventional probe or rake 

measurements are used to estimate wall boundary layer thicknesses and improve estimates of the 

freestream flow.   

 

In a hypersonic flow with real-gas effects, the temperature of the high pressure gas in the reservoir is 

typically well above 1000 K so the gas is dissociated, producing O and N atoms as well as NO in the case 

of air.  Electronic excitation can occur and some of the species can become ionized, producing O
+
, N

+
, 

and NO
+
, as well as free electrons.  Excited vibrational modes of O2 and N2 are populated in high-

enthalpy air flows.  As the gas expands through the nozzle the gas cools, and collisions keep the flow in 

equilibrium at first. As the temperature decreases, the excited and dissociated species begin to recombine 

as the chemical and thermal energy is transferred to kinetic energy of the flow.  However, somewhere in 

the expansion the rate of collisions is not sufficient to keep the flow in equilibrium and the flow enters a 

non-equilibrium state.  For example, the NO does not convert back to N2 and O2 even though the 

temperature may drop below room temperature.  Also, the vibrational energy stays frozen in the excited 

Figure 1.1. Schematics of low-enthalpy equilibrium and high-enthalpy, real-gas nozzle flows. 
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vibrational states of the different diatomic molecules.  Typically the translational and rotational 

temperatures remain in equilibrium with each other while being significantly different than the vibrational 

temperature.  These processes are depicted in Fig. 1.1b.  The dashed red curve shows the trend in the NO 

mole fraction, the dashed blue curve shows the vibrational temperature, and the dashed green curve shows 

the translational and rotational temperatures.  The solid green curve shows the temperature that would 

have occurred had equilibrium been maintained.  Since energy is conserved, the energy stored in 

vibrational causes lower (dashed) rotational and translational temperatures than equilibrium.  The optical 

measurement techniques described in subsequent sections endeavor to quantify these many equilibrium 

and non-equilibrium phenomena.   

1.6. Layout of this manuscript 

This manuscript is meant to complement two previous von Karman Institute Lecture manuscripts
11,12

 

and an AIAA Book chapter.
13

  The past manuscripts were more pedagogical, including derivations of the 

theoretical equations of each measurement technique.  They were more broadly focused on measurement 

techniques for aerospace, hypersonic, and non-equilibrium flowfields.  The current manuscript focuses 

specifically on hypersonic freestream measurements with an emphasis on molecular, laser-based, 

quantitative flowfield measurement techniques (though some non-laser based and non-molecular 

techniques are also described).  There is little or no derivation of the theory behind the techniques 

described herein.  At most, one equation is provided per section, in an effort to make the material 

approachable for the non-expert, and also to not repeat content from previous manuscripts.  The eight 

sections below each describe a measurement technique or a class of measurement techniques.  Each 

provides an introduction and a brief overview of the theory in layman’s terms, including numerous 

references where the reader can go for further details.  Several examples are then cited for each technique.   

The method of selection of examples differs for each technique’s section, where examples are cited for 

different variations of the technique (as in the section on Laser Scattering Techniques) or as a function of 

another parameter (as in the section on Particle Image Velocimetry (PIV) where Mach number was used 

to sort the examples).  Laser-based methods are described first, roughly in the order of complexity.  

Among the laser based methods, PIV is shown last since it requires particles to be seeded into the flow.  

The last “technique” section describes emission spectroscopy which is not a laser-based technique but 

which nonetheless can provide quantitative measurements in hypersonic facilities.  Finally, the conclusion 

shows comparisons from the different measurement techniques and provides some example performance 

specifications for the methods. 
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2. Absorption Spectroscopy 

2.1. Introduction to Absorption Spectroscopy 

Laser absorption spectroscopy (LAS) measures the light absorbed through a gas sample of interest.  

When light of a specific wavelength interacts with atoms or molecules in a gas flow, the light will be 

absorbed at specific wavelengths.  By shining a light source through a gas and measuring the incident 

intensity on a detector on the other side, various properties of that gas can be discerned.  Absorption 

measurements generally operate as a pitch-catch system, where the pitch side contains the light source 

and any reference cells needed, and the catch side detects and records the transmitted light signal.  The 

strength, shape, and integrated absorbance of the characteristic spectral features are used to determine the 

numerous gas properties. 

LAS has the ability to measure temperature, T, (translational, rotational, vibrational), pressure (P), 

species concentrations (number density or mole fraction, X), density (), and velocity (V) of gases of 

interest.  Using these measurements, mass flux can also be determined.  Theoretically, all the gas 

properties can be measured simultaneously with a single well-selected laser, and many studies do include 

multiple measurements using a single laser.  Light from multiple lasers can also be combined together 

(multiplexed) in a single sensor to measure multiple species and properties.  LAS is commonly a path-

averaged measurement (that is, integrated along a line of sight).  However, the technique can also be used 

to tomographically reconstruct all the aforementioned properties with an appropriate experimental setup, 

providing spatial resolution.  Laser selection guidelines help assist the researcher when choosing a 

spectral region to interrogate.
14,15

 

Species including CO2, CO, H2O, NO, O2, O, K, Ar, OH, and Rb are all potentially present in the 

freestream (depending on the facility in question), and can be probed by this technique.  Measurements of 

the freestream have been conducted at the VKI Longshot free-piston facility (T, P, X, and V using CO2 

and CO),
16,17,18

 CUBRC LENS expansion and shock tunnels (X and V using NO and H2O),
19-21

 ONERA 

F4 arc-driven tunnel (T, V, 𝜌, X using NO and CO2),
16,22,23

 DLR HEG shock tube and ONERA S4MA low 

enthalpy facility (T, V, and X using NO and H2O),
23,24

 Calspan 96-inch shock tunnel (T, X, and V using 

H2O and K),
25,26

 NASA Langley Direct Connect Supersonic Combustion Test Facility (DCSCTF) (T, V, 

and mass flux using H2O, including tomography),
27,28

 and the UVA Direct Connect Scramjet Combustor 

(UVaSCF) (T, V, and column density using H2O, including tomography).
29,30

  Measurements in shock 

tubes or expansion tubes have also had a strong foundational impact on the technique.
31-38

  Identification 

of test gas arrival, test gas contact surface arrival, and driver gas arrival is also possible with LAS.
39

 

Spectroscopy measurements can be traced back to the 1600s, with the separation of sunlight into its 

spectrum through a prism.  By the early 1800s, the absorption of radiation from the sun was researched by 
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Fraunhofer, and are known now as the Fraunhofer lines.  Broad-spectrum light sources other than the sun 

were also used, including deuterium, hydrogen, halogen, and tungsten lamps to name just a few.  Much 

knowledge of the structure of atoms and molecules was determined using spectroscopic techniques.  

When lasers became available in the 1960s, they enabled spectroscopists to make high-resolution 

measurements of single absorption transitions, which were able to fill in gaps of information in previously 

recorded spectra that could not be resolved before with the broader light sources (see Ref. 40).  In 1977, 

measurements were made in a shock tube to measure high-temperature, shock-heated CO.
31

  Harmonic 

detection at higher modulation frequencies had been explored at the same time, and in 1978, first and 

second harmonic detection was used to increase the sensitivity over direct absorption measurements.
41

  In 

the early 1990s, Philippe and Hanson demonstrated both an air mass flux sensor
32

 and a sensor for T, P, 

and V
33

 for shock tube flows using wavelength modulation spectroscopy.  The wavelength modulation 

was 10 MHz, while the scan rate was 10 kHz in order to capture high-speed transients in the flows.  The 

study incorporating wavelength modulation to obtain high accuracy for velocity, along with the single 

sensor design for density measurements (this was used in the low speed tunnel at Stanford).  After the 

initial success of the LAS technique, applications of LAS to hypervelocity flows
19,21,22,26,42

 and scramjet 

combustors
43,44

 continued in the 1990s and 2000s.  Work in characterizing hypersonic facilities using 

laser absorption spectroscopy has been an ongoing endeavor from the late 1970s until present day. 

Absorption measurements are only as accurate as the spectral data supplied to the models.
45,46

  Regions 

in the near-to-mid IR have been extensively studied by researchers in many fields (medical, atmospheric 

sciences, combustion, and hypersonics), and much of the spectral data is well established.  As new 

spectral regions are explored due to their accessibility with new lasers, accurate spectral information is 

needed for the absorption transitions.  The subject of many papers is to more accurately define the 

spectral parameters (such as line strengths, collisional broadening and shift parameters, etc.) of less-

investigated portions of the spectrum for molecules that would be of use in future measurements.  For 

example, spectroscopic parameters were investigated for CO2 near 2.0 µm
47

 and for H2O near 2.5 µm.
48

 

2.2. Basic theory of Absorption Spectroscopy 

From quantum mechanics, absorption from gas molecules is predicted at discrete wavelengths 

matching atomic or molecular resonances.  However, absorption lines are in fact spectrally broadened to 

become finite-width absorption features.  Consider shining a monochromatic light source through a gas.  

The incident intensity is measured before passing through the gas, and the transmitted intensity is 

measured after passing through the gas.  The ratio of the transmitted-to-incident intensity is a measure of 

the transmission through the gas, and from this value, properties of the gas can be extracted.  The Beer-

Lambert law is the fundamental relation for absorption spectroscopy, shown in Eq. 2.1 below.  This 
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expression governs the transmission of monochromatic light through a homogeneously absorbing 

medium.  The fractional transmission is related to the absorbing path length (L) and to a term called the 

spectral absorption coefficient (𝑘𝜐), which depends on the absorbing gas properties such as temperature, 

pressure, and concentration through the lineshape broadening mechanisms (natural, Doppler, collisional).  

For details of these mechanisms and how they are computed see Danehy et al.
13

  

                                                                  
𝐼

𝐼0
= 𝑒𝑥𝑝(𝑘𝜐𝐿)                                                                (2.1) 

The Doppler-broadened lineshape arises from the Maxwellian spread of velocities of the absorbing 

atoms or molecules relative to the observer (detector).  The width of a Doppler-broadened absorption 

feature is used to determine the translational temperature of the gas.  The rotational/vibrational 

temperatures are found by taking the ratio of integrated absorbances of two features that have a 

sufficiently different lower-state energy.  Collisional broadening arises due to the collision of molecules, 

where it is assumed that collisions are binary (only two bodies per collision) and the transition time is fast 

compared to the collision duration.  The pressure of the absorbing species can be determined from the 

width of a collisional-broadened feature.  The concentration of the gas (mole fraction, number density, 

etc.) can be determined using the integrated absorbance of the feature when temperature and pressure are 

known.  When the laser beam is angled with respect to the flow direction (i.e. not perpendicular to the 

flow axis), the absorption features are shifted to either lower/higher wavelengths depending on whether 

the beam is pointing downstream/upstream relative to the flow.  The shift of the peaks in wavelength 

(termed the Doppler shift) is used to determine the flow velocity.  By using a double-pass system, where 

one beam-pass is pointed upstream and the other downstream, the sensitivity of the velocity measurement 

can be increased since twice the Doppler shift is observed (assuming that the shift is large enough to 

result in two discrete peaks).  Mass flow rate can be computed by taking the product of the previously 

calculated number density and velocity. 

Another method that is widely used is to simulate the absorption spectrum as a function of the gas 

properties.  Quantities of the unknown properties are then iterated and the resulting simulations compared 

to the measured data.  The simulation parameters that yield the best fit between the simulation and 

measured data is then assumed to represent the gas conditions. 

A basic laser absorption spectroscopy setup can be seen in Fig. 2.1a.  The system operates as a pitch-

catch setup, where the laser (L) is pitched from one side through the gas of interest, and caught on the 

other side by an appropriate detector (D).  The laser wavelength is very finely controlled using a laser 

diode driver and temperature controller (LDD-TEC).  A wavelength reference (WR) is used to accurately 

define the wavelength tuning of the laser so the measured data can be compared to spectral simulations.  

The data acquisition system (DAQ) collects the raw data from the wavelength reference and the detector. 
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The wavelength is typically scanned across the absorption feature of interest using a ramp such as that 

shown in Fig. 2.1b.  The laser is tuned (changed in wavelength) by rapidly varying the injection current 

through the use of a function generator.  At low currents, the laser is below threshold and does not emit 

light, which provides a background signal (dotted red).  As the current increases, the laser emits at 

increasing intensities, corresponding to an increase in wavelength.   The transmitted signal (solid black) 

and the non-absorbing baseline signal (dashed blue) are used to determine the fractional transmission.  

The baseline signal can be obtained in many ways, for example by evacuating the flow path and acquiring 

a scan prior to measurement. 

Many fundamental (ground to first excited level) transitions for molecular absorption fall in the 

infrared (IR) range, so near- to mid-IR laser sources are required (although atomic transitions do occur 

near the visible spectrum for oxygen at around 770 nm, for example).  Many types of lasers are ideally 

suited for absorption measurements.
49,50

  Lead-salt lasers were used in early methods because they were 

the most commonly available, but operated with cryogenic cooling and had low power output.
31,41

  

Advances in semiconductor lasers has allowed extensive research in absorption spectroscopy, due to the 

widespread availability of less-expensive laser diodes, and customer-specific wavelength selections.  

Distributed feedback (DFB) lasers have output powers of approximately 10-50 mW, with a wavenumber 

tuning interval of about 1-3 cm
-1

 at rates up to the MHz range, with emission linewidths narrower than 10 

MHz.  In most applications, temperature of the diode is used to coarsely tune the laser to a wavelength, 

and injection current is used as a high-speed wavelength tuning.  However, rapid temperature tuning for 

DFB lasers has also been investigated.
51

  External Cavity Diode Lasers (ECDL) have very narrow 

 

Figure 2.1.  (a) Basic laser absorption spectroscopy setup, showing the laser (L), wavelength reference 

(WR), laser diode driver and temperature controller (LDD-TEC), detector (D), and data acquisition 

system (DAQ), and (b) a typical ramp used to injection-current tune the wavelength of the laser across 

absorption features.  
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emission linewidths (smaller than 1 MHz) with a wide tuning range, but require precise alignment and 

calibration of the mechanical components of the external cavity.  Quantum cascade lasers (QCL) are 

designed for the mid-IR spectral range between 3-20 µm.  Slow temperature tuning ranges can be as large 

as 20 cm
-1

, while faster injection current tuning ranges fall between 2-4 cm
-1

.  External cavity QCLs (EC-

QCL) can have even larger tuning ranges (100 cm
-1

) while maintaining the narrow laser linewidths (30 

MHz) needed for accurate lineshape determination.  Vertical cavity surface emitting lasers (VCSEL) have 

lower powers than DFB lasers (0.5-5 mW), but have a broader tuning range on the order of 30 cm
-1

 (total 

spectral range from approximately 750 nm - 2.4 µm).  Fourier domain mode locked lasers (FDML) have a 

broadband spectral range (100 nm in the near-IR) with high repetition rates (10 kHz – 1 MHz), and 

relatively narrow laser linewidths. 

To keep costs low, a factor used in absorption transition and laser selection is to use lasers developed 

for the telecommunication industry's wavelength range (typically in the near-IR).  In this range, fiber 

optics are also readily available and inexpensive.  Using optical fibers makes multi-beam systems easier 

to set up than free-space systems.  When concentrations are low, stronger absorption transitions further 

into the mid-IR range may need to be used.  Care must be taken to ensure the optics used are transparent 

to these wavelengths.  For windows, less expensive BK-7 which is transparent in the near-IR can no 

longer be used; instead, CaF2, sapphire, or germanium are used, but are also significantly more expensive. 

Absorption spectroscopy relies on the precise control of emitted wavelength with time. While the 

current and temperature of the laser sets the emission wavelength, it does not determine nor measure the 

absolute wavelength itself.  A wavelength reference is needed, such as a wavemeter, a solid etalon, an air-

spaced etalon, or a reference gas cell at known conditions. 

Detector selection is another important step in the system design.  The wavelength range of the 

detector must match that of the emitted radiation from the laser while also providing adequate sensitivity 

and bandwidth.  InGaAs sensors are sensitive from 800 nm to 2600 nm, with bandwidths ranging from 

low MHz range up to over 1 GHz.  InSb detectors are sensitive in the range between 3 µm and 5 µm, and 

are generally liquid nitrogen cooled to reduce noise.  InAsSb detectors cover an approximate range from 1 

µm to 5.8 µm, and can be operated with a thermoelectric cooler to reduce noise, while exhibiting MHz 

range bandwidths.  Ge detectors operate in generally the same range as InGaAs detectors, but have higher 

levels of thermally induced noise and bandwidths in the hundreds of kHz.  Another option in the 1 µm to 

4.8 µm range are the less expensive PbS and PbSe detectors, but these have lower bandwidths, which can 

be suitable for slower direct absorption spectroscopy (DAS) measurements.  To reach the lower 

wavelength regions necessary for O2 measurements, inexpensive (a couple hundred dollars) Si 

photodetectors are used, and have a sensitive range between 200 nm to 1100 nm with hundreds of MHz 
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bandwidth.  To extend the cutoff wavelength into the far-IR, HgCdTe detectors are used with 

thermoelectric coolers, and cover the range from 2.5 µm to above 10 µm, with bandwidths in the 

potentially hundreds of MHz.  Note that the responsivity of the detectors over the wavelengths mentioned 

in this section are not constant.  That is, there is generally a peak responsivity at a certain wavelength, and 

a drop-off at other wavelengths. 

Direct absorption spectroscopy is the simplest and most intuitive version of LAS.  The laser 

wavelength is scanned across the absorption features, and the absorbance can be directly determined by 

dividing the absorbing signal by the non-absorbing baseline signal as in Fig. 2.1b, and using the Beer-

Lambert law.  This technique is useful when simple interpretation of the data is needed, for smaller data 

sets, and allows the use of less expensive detectors and data acquisition systems (lower bandwidth).  

Problems arise in DAS when beam steering, window fouling, and beam path etaloning (wavelength-

dependent constructive/destructive interference between parallel-faced optics) cause interference and non-

absorption intensity attenuation of the signal.  Flow luminosity of high-temperature flows can be 

problematic for wide spectral-range measurements, but generally does not affect narrow spectral 

measurements like those used to scan a single absorption transition.  This is because the luminosity is 

spectrally much wider than the transition itself, and the signal will look like it is riding on a constant 

intensity background, which can be subtracted before processing the data.  For low density hypersonic 

facilities, beam steering is less of an issue.  Window fouling can be prevented by purging the surfaces 

with non-absorbing nitrogen.  Etaloning can be mitigated by using wedged optics wherever possible along 

the beam path.  Log-ratio detection of DAS can be used, and has been demonstrated to be an effective 

way of correcting for stray light falling on detectors.
52

 

Wavelength or frequency modulation spectroscopy (WMS/FMS) takes the simple DAS wavelength 

tuning ramp and adds an extra, high-frequency sinusoidal modulation on top.
53-55

  This shifts the 

absorption information to harmonics of the modulation frequency which can be isolated using a lock-in 

amplifier, reducing the interference from low-frequency noise that can dominate in DAS measurements.  

By normalizing the 2f (lineshape-sensitive) signal by the 1f (laser intensity-sensitive) signal, noise from 

non-absorption losses is suppressed.  For extremely high frequency measurements (MHz range), fixed-

wavelength WMS (FW-WMS) can be used.  The downsides of FW-WMS is that the precise modulation-

centered wavelength must be known.  To alleviate this need, scanned-wavelength WMS (SW-WMS) 

allows for a reference cell (as in DAS) to be used to characterize the wavelength scanning in time, but 

also decreases the measurement bandwidth.  The analysis of the raw data from WMS/FMS methods is 

more intensive than that of DAS measurements. 
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Cavity ringdown spectroscopy (CRDS) inserts the probe beam into a reflective cavity, and measures 

the time it takes for the photons to attenuate, which can then be related to the absorption, length of the 

cavity, and the reflectivity of the mirrors.
56

  Cavity enhanced absorption spectroscopy (CEAS) increases 

the effective optical path length through the gas sample, and the measured absorbance can be related to 

the single-pass absorbance using a cavity absorption gain factor.  Using CEAS, uncertainties of post-

shock temperatures of ±1% and of excited-state populations of ±10% for atomic oxygen have been 

reported at scanning rates of 50 kHz.
57

 

Time-division multiplexing is used in many studies to probe multiple species/features in different 

spectral locations using more than one laser, but propagating along a single beam and detected on a single 

detector.
58

 

The glaring limitation inherent in absorption spectroscopy is that the measured signals are path-

integrated.  Line-of-sight discretized absorption feature simulations have been performed to couple CFD 

simulations to absorption spectra,
27,59,60

 and also to take advantage of the path-integrated nature of the 

measurement.  Tomographic LAS systems have been used to provide temporally and spatially resolved 

measurements of gas properties at high tuning rates (~50 kHz).
61

 

Noise is inherent in every measurement system from the light source, detectors, and acquisition 

systems.  The real absorption signal must stand out from the noise.  The lower limit of detection is 

different for the different methods.  DAS needs higher SNR, while WMS is order of magnitude more 

sensitive than DAS. 

Early DAS measurements reported low ppb detection limits.
41

  Sub-ms temporal resolution, along with 

experimental uncertainties of 75 m/s, 0.07 atm, and 75 K for velocity, pressure, and temperature, 

respectively, were reported in the early 1990s.
32,33

  For early WMS measurements, sensitivities of 10
-4

-10
-

5
 fractional absorption were achieved with modulation in the kHz range.  Recent studies report accuracies 

of <0.5% for velocity, <1% for relative wavenumber linecenter determination, <4% for temperature, <2% 

for mass flux, and <1% for integrated absorbance.  The spatial resolution along the beam path is limited 

by the beam diameter, usually on the order of a millimeter, but spatial resolution using tomography is 

increased by using more lines-of-sight in the reconstruction of the flow field. 

Commonly detected species in hypersonic flows are CO2,
16-18,42,62-68

 CO,
31,37,42,65-67,69

 NO,
20-23,70,71

 

O2,
32,33,60,72,73

 and H2O.
19,23,25,27-30,34,36,38,72,74,75

  Less common species that have also been used as markers in 

hypersonic flows are K,
26

 Ar,
76

 OH,
77

 O,
78

 and Rb.
79
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2.3. Examples of Absorption Spectroscopy  

2.3.1. P, T, and V using CO2 Measurements at VKI Longshot 

A scanned-wavelength direct absorption spectroscopy system was used to probe the CO2 transition at 

1.6 μm to measure freestream pressure, temperature, and velocity.
17,18,64

  Longshot is a short duration free-

piston facility with test times on the order of 20-40 ms, and freestream temperature and pressure of 

approximately 100 K and 500 Pa, respectively.  Due to the high plenum temperatures and pressures just 

before the expansion nozzle, real gas effects need to be considered.  During the expansion through the 

nozzle, the large pressure drop results in vibrational freezing of the test gas and potential condensation.  

The transducer-based approach for determining freestream conditions at the Longshot facility uses 

reservoir/plenum pressure, and total pressure and wall temperature (which is used to compute the 

stagnation heat flux in the freestream) on a hemisphere probe in the freestream of the test section.  A 

model based on an expanding flow and Fay-Riddell heat transfer correlation is used.
80

  The model 

assumes an initial guess for the reservoir temperature, and is iterated until the reservoir temperature 

converges to its actual measured value.  Uncertainties of the model’s freestream values for temperature, 

pressure, and velocity have been reported as 10.1%, 7.2%, and 3.2%, respectively (for N2, since no 

uncertainties have been computed for CO2). 

The external cavity diode laser (ECDL) used had a narrow scanning range of about 1.5 cm
-1

 to 2 cm
-1

, 

which probes a single rovibrational transition of CO2.  The Doppler wavelength shift in the Longshot 

facility is limited in one respect by the available beam propagation angles across the tunnel (10º-20º).  A 

double-angle beam propagation setup was used (one pointing downstream, one pointing upstream), where 

the angle from the perpendicular was ±19.3º.  A raw data absorbance trace for test 1622 can be seen in 

Fig. 2.2, where the measured raw data are shown with black circles and the double Voigt peak fitting is 

shown in red.  Two peaks are seen due to the Doppler shift; one peak is shifted lower in relative 

wavenumber and the other shifted higher in relative wavenumber due to the downstream/upstream 

propagation angles. 
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Temperature, pressure, velocity, and enthalpy results can be seen in Fig. 2.3.  The most up-to-date data 

reduction and interpretation can be found in Meyers et al.
18

  The measurements are separated by (and 

averaged over) approximately 1.6 ms due to the 600 Hz scanning rate, resulting in about 15 data sets per 

run.  The higher discrepancies between TDLAS and model-computed values for temperature is because of 

difficult baseline fitting of the raw data due to vibrations.  This error can be seen to carry into the pressure 

results as well.  Freestream velocity results are less sensitive to the baseline fitting errors because they use 

the separation of peaks of the Doppler-shifted features.  The velocity agrees well with Longshot facility 

values.  The uncertainty of the velocity measurements was reported as approximately ±100 m/s out of a 

flow velocity of about 1500 m/s.  The enthalpy was computed using the temperature and velocity, and 

shows good agreement with the facility model values (±10% uncertainty).  This is because the major 

contribution to enthalpy in hypervelocity flows is from the velocity, and not the less well-defined 

temperature.  These results demonstrate that although temperature and pressure can be hard to fit 

accurately when harsh conditions exist, the velocity and thus enthalpy of the facility can still be 

accurately determined. 

 

Figure 2.2.  Fit to absorption data utilizing a 2-peak Voigt model.  Top plot shows raw tunable diode 

laser absorption spectroscopy (TDLAS) data superimposed onto the total fit function.  The bottom plot 

shows the separate contributions to the total fit.  Reprinted with permission of the authors. 
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2.3.2. T using electronically excited O in NASA Ames IHF 

Measurements at the NASA Ames high power (60 MW) interaction heating facility (IHF) were 

performed by Nations et al. to monitor the gas temperature in the plenum before the expanding nozzle to 

help characterize the test environment.
78

  Accurate knowledge of flow enthalpy is vital for determining 

test conditions in the facility.  To tailor the flow enthalpy, additional air (add-air) is injected and mixed 

with arc-heated gases just upstream of the expansion nozzle.  The add-air mixing plenum was initially 3.7 

cm long, but since the turbulent mixing process is not well understood, the mixing may be incomplete and 

temperature gradients at the nozzle inlet manifest as non-uniformities in the test section. 

 

Figure 2.3.  Freestream (a) temperature, (b) pressure, (c) velocity, and (d) computed enthalpy for test 

1622, with comparison to Longshot facility model values.  Adapted with permission of the author. 
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Computational fluid dynamics (CFD) models are used to determine the state of the gas in the test 

section, but due to the complexity of the arc-heating, they typically only model from the inlet of the 

nozzle to the testing chamber.  The accuracy of these models then relies on the knowledge of the nozzle 

inlet boundary conditions, which for this facility uses multiple discrete radial rings, each assuming fully 

mixed, local thermodynamic equilibrium flow.  The purpose of the laser sensor was to determine whether 

the add-air was sufficiently mixed with the arc-heated gases before entering the nozzle. 

A fiber optic system split an external cavity diode laser into four separate beams, which were then 

pitched across the plenum chamber and detected on the other side. The electronically excited atomic 

oxygen (O*) transition located at 777.2 nm was probed at a scanning rate of 100 Hz.  A moving average 

of 100 scans was used, resulting in an effective measurement rate of 1 Hz.  The laser tuning range was 

approximately 2 cm
-1

, which was just wide enough to scan through a single transition.  The absorption of 

a single scan of one of the four laser beams can be seen in Fig. 2.4.  The baseline signal in Fig. 3.4a shows 

what the intensity would be if no O* were absorbed along the path length.  The absorbance was calculated 

using the Beer-Lambert law, and fit with a Voigt profile in Fig. 3.4b, along with the residual of the fit 

below it. 

Due to the unavailability of high-temperature spectroscopic parameters (collisional broadening 

coefficients and potential Zeeman broadening), the Doppler widths, and thus temperatures, were not 

extracted from the fit Voigt lineshape.  Instead, the Voigt profile was used to compute an integrated 

absorbance (3% overall uncertainty) to determine the temperature (4% overall uncertainty at 7260 K).    

When the signal-to-noise ratio decreased below a threshold of unity, the detection limit of the system was 

reached, which occurred at about 4500 K for this absorption transition and setup.  Two add-air conditions 

 

Figure 2.4.  Measured O* absorption from a single laser scan a) raw transmitted intensity b) 

absorbance versus wave number.
78

  Reprinted with permission of the authors. 
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were tested: the first (condition I) was for a ratio of add-air to main air of 0.27, and the second (condition 

II) was for a ratio of add-air to main air of 0.93.  Significant differences of temperature in the four laser 

measurement paths indicated that mixing was incomplete for both add-air conditions. 

To increase mixing, the length of the plenum chamber before the nozzle inlet was extended such that 

the new length was approximately 38 cm.  Optical measurements could also then be made in 10 cm axial 

increments along this new plenum.  Axial measurements of the path-averaged temperatures along the 

plenum indicated a reduction in temperature signifying an increase in mixing, but also showed that the 

modified plenum length was still not long enough to ensure complete mixing. 

To compare the original and modified plenum designs, CFD simulations of the nozzle inlet were 

compared to laser measurements at the plenum exit (3.7 cm and 38 cm downstream of the add-air inlet for 

the original and modified plenums, respectively).  Results for add-air condition I and II are shown in Fig. 

3.5a and b, respectively. 

For both add-air conditions, the modified plenum design resulted in increased agreement between the 

laser measurements and the computational results for the radially stratified temperature.  The radial 

temperature gradient was also captured for both conditions using the modified plenum, suggesting a well-

mixed combination of add-air and arc-heated flow.  The authors suggest further improvements by 

increasing the number of lines-of-sight for higher fidelity comparisons with CFD.  In this facility, the 

absorption spectroscopy measurements aided a redesign of the facility to improve the uniformity of flow 

entering the nozzle, which can then provide a more accurate state of the flow in the testing chamber. 

 

 

Figure 2.5.  Simulated (blue line) and measured temperature distributions a) condition I and b) 

condition II with upper (red) points in original and lower (black) points in modified IHF.
78

 Reprinted 

with permission of the authors. 
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2.3.3. V, T, and Mass Flux using H2O in NASA Langley DCSCTF 

Chang et al. performed measurements of mass flux in the vitiated flow of the NASA Langley Direct-

Connect Supersonic Combustion Test Facility (DCSCTF).
27

  The WMS method was used to measure the 

temperature and velocity of H2O transitions at 1349 nm and 1341.5 nm.  One of the lasers pointed 

upstream at 45º while the other pointed downstream at 45º, for a total crossing angle of 90º.  At the 

selected wavelengths, optical fibers could be used to simplify the setup, and relatively inexpensive BK-7 

glass was also used.  The scanning rate was 50 Hz, which was sufficient due to the longer run times of the 

DCSCTF (~50 s).  The mass flux was then determined from measured temperature and velocity, in 

addition to facility pressure measurements.   

To obtain spatial profiles across the channel in the vertical and horizontal directions, the system was 

mechanically translated along either axis, and one second of data was taken at each of the 10 discrete 

locations until the system had scanned from one wall to the other.  The total time for the acquisition along 

one axis was 13 seconds, which included time for acquisition and movement. 

CFD simulations of the flow in the duct were used to compute path-integrated lineshapes for both the 

upstream and downstream laser beams.  Results of the velocity from the Doppler shift for various duct 

boundary layer thicknesses showed a linear reduction of the velocity with increased boundary layer 

thickness.  The decrease in measured velocity was due to the path-integration through the slower 

boundary layer flow in addition to the freestream core flow.  The CFD predicted that 10% of the path 

length was in the boundary layer flow in the facility, resulting in a decrease of the measured velocity 

relative to the core velocity of just 2%.  From these CFD results, a velocity correction could be used for 

actual facility measurements. 

Results for the transient mass flux from the velocity and temperature measurements of the LAS 

measurements are shown in Fig. 2.6, for both the (a) uncorrected and (b) corrected velocities.  Both the 

upstream and downstream facing beam traces are shown and are in good agreement.  The predicted value 

from the facility model is shown with a blue line, and agrees well with the LAS computed mass flux.  The 

slow decrease of mass flux with time is due to a decrease in the O2 mass flowrate supplied to the facility. 
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By scanning the measurement system in both the vertical and horizontal center-planes at discrete 

points, the measured values were determined at transverse points across the duct, providing a spatial 

measurement of the flow properties.  The mass flux along the vertical and horizontal center-planes is 

shown in Fig. 2.7a and (b), along with the corresponding CFD solution across the duct. 

 

Figure 2.6.  Mass flux using temperatures taken with downstream- and upstream-pointing beams: a) in 

the center horizontal plane for the Mach 7 flight condition and b) in the center vertical plane for the Mach 

6 flight condition.  Facility model value is also shown in blue.  Reproduced with permission from the 

authors. 

 

Figure 2.7.  Spatially resolved mass flux at Mach 7 condition plotted from a) left to right of channel 

(facing downstream) in vertical planes and b) top to bottom of channel in horizontal planes.  

Reproduced with permission from the authors. 
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The measurements and CFD agree well, which is expected due to the excellent agreement of the 

velocity and temperature measurements.  The uncorrected velocity is about 1.7% lower than the facility-

predicted value, and after correction is within 0.25% of a 1630 m/s flow.  The standard deviation of the 

average temperature is approximately 10 K.  The error bars on the measured data are from the standard 

deviation over the one second of data acquisition time at that measurement location.  When measuring 

through mostly freestream core flow, the measurements and CFD agree very well with small errors.  

When measuring through mostly boundary layer flow, the measurements and CFD differ more and have 

higher errors.  The good agreement between mass flux measurements and facility models over the entire 

tunnel cross section indicates the usefulness of this technique for future mass flux measurements, given 

that velocity and temperature can be accurately measured. 

2.3.4. Tomographic H2O Concentration at NASA Langley DCSCTF and UVaSCF 

The path-integrated nature of normal absorption measurements is a limitation when trying to analyze 

cross sections of flow in hypersonic test facilities.  By using many lines-of-sight simultaneously, a 

tomographic reconstruction of the flow field can be obtained.  Measurements of H2O number density 

were performed by Busa et al. at both the University of Virginia Supersonic Combustion Facility 

(UVaSCF) and at DCSCTF.  The initial demonstration is given in Busa et al.,
28

 and the updated results 

from the tomographic-reconstruction are given in Busa et al.
30

  The purpose of these measurements was to 

assess the flow at the exit of a scramjet engine to quantify its combustion efficiency.  The H2O results, 

along with a known injected hydrogen flowrate to the engine, could then be used as an assessment of 

combustion efficiency, much like CO2 and H2O are used as combustion efficiency indicators in the 

burning of hydrocarbons. 

The initial system at DCSCTF used five individual laser pitch/catch boxes (called Tomographic 

Emitter-Detector, or TED, boxes) mounted equidistant radially on a rotational ring around the exit plane 

of the facility.  Each TED box can rotate about its own axis in steps of 1.3º to scan a total range of 26º, 

creating a fan.  The entire five-TED box setup only needs to rotate 72º to capture all possible angles and 

lines-of-sight.  In order to probe multiple transitions at the same time (low and high lower-state energy 

transitions), three lasers were multiplexed into a single fiber.  The first two lasers probed “cold” 

transitions, while the third laser probed “hot” transitions.  Using fibers over free-space optics is critical for 

tomography because the setup would be both expensive and cumbersome otherwise.  Run times to obtain 

a complete reconstruction required about seven minutes. 

The same tomographic technique was used at the UVaSCF, and the tomographically reconstructed 

H2O number density was obtained.  A stereoscopic PIV (SPIV) setup was used to measure three-

component velocities at the same plane as the absorption measurements.  The density of H2 at the 
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measurement plane was calculated using the H2O number density using the assumption that all the H2 

molecules exist either as H2O or as the unburned H2 fuel.  The mass flow rate of H2 could then be 

calculated using the H2 density, velocity, and the area of the spatial pixel (2 mm x 2 mm) in the 

measurement plane.  Combustion efficiency was finally computed by comparing the total mass flow rate 

of H2 at the exit to the known injected H2 fuel. 

 

Figure 2.8.  Measurement plane H2 density, axial velocity, and H2 mass flow rate (2 mm x 2 mm pixel 

area) via absorption/SPIV (a,c,e) and CFD (b,d,f).
30

  Reprinted with permission of the authors. 
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Measurements using the tomographic setup (now with just a single TED box) were conducted at the 

UVaSCF, and the tomographically reconstructed H2 density, axial velocity, and H2 mass flow rate were 

compared to CFD simulations of the same quantities, shown in Fig. 2.8.  Measurements were performed 

at a plane 5 mm downstream of the exit of an H2-fueled dual-mode scramjet engine.  The comparison 

between experimental and numerical solutions shows good agreement, although the asymmetry is higher 

in the experimental data.  The mass flow rate of the H2 at the measurement plane has an uncertainty of ± 

8.5%.  The combustion efficiency calculated from the experimental measurements and those obtained 

from CFD simulations are very close (98.4% ± 8.5% from experimental vs. 99.5% from CFD).   

When running tests at the UVaSCF, only a single TED box was used because flow duration was long.  

When moving the system to a facility with shorter run times such as the DCSCTF, five TED boxes were 

used instead to decrease the measurement time by a factor of five.  Testing was still segmented because a 

full reconstruction using the five boxes took seven minutes, requiring eight runs for a complete database 

(maximum run time of approximately 50 seconds).  Tomographic measurements like those demonstrated 

here can provide real spatial resolution of hypersonic facility freestream flows, whereas single line-of-

sight measurements are always path-integrated. 

2.4. Conclusions for Absorption Spectroscopy 

Absorption spectroscopy has many benefits as an optical diagnostic in hypersonic flows.  The 

measurements are non-intrusive, in situ, and easy to analyze (especially with DAS).  Measurement rates 

can be very fast if the facility requires it (expansion tunnels).  If the wavelength selection allows it, fibers 

can be used to facilitate the simple pitching and catching of light, which can be especially useful for 

multiple laser/line-of-sight measurements (such as tomography).  Selection of isolated transitions makes 

the results species-specific and unambiguous.  Lasers currently used for absorption spectroscopy are 

typically low power, small, lightweight, robust, and relatively inexpensive.  The entire systems can be 

somewhat easily transitioned over to a flight-test instrument, which is also made easier because the 

systems are robust.  If multiple lasers are used to probe multiple lines or species, multiplexing can be used 

to avoid purchasing more optics and detectors.  Their biggest benefits are the ability to provide 

quantitative, multi-property, time-resolved, multi-species measurements with a single instrument. 

Although there are many benefits to LAS methods, every optical technique has its limitations.  The 

biggest limitation for simple measurements is their path-integrated nature.  If large gradients in flow 

properties are present along the beam axis, it can be hard to de-convolve the actual properties of the gas at 

the location of interest.  Since absorption is path-averaged, the tunnel boundary layers will be included in 

the measurement if the laser passes through them.  This can be somewhat mitigated by looking at the 

Doppler shift to see which lines are in the faster core flow versus the slower boundary layer flow.  Using 
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CFD models to simulate the laser absorption along the line-of-sight and compare to measured data has 

also proven useful.  Tomographic reconstruction can compute a 2D spatial reconstruction of the flow 

volume at fast tuning rates, but the setups are more complex, expensive, and take longer to obtain the 

reconstructed results.  Depending on wavelength choice, which is limited by species transition strengths, 

optical materials may be more expensive, and fiber systems may not be available or are prohibitively 

expensive.  When lower limits of detection are needed, high-frequency modulation techniques can be 

used, but they also require faster, more expensive detectors and data acquisition systems.  Systems can 

range from low-cost and simple, to high-cost and complicated.  The path to take is clearly governed by 

many factors, and is ultimately up to the engineer. 
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3. Planar Laser-Induced Fluorescence (PLIF)  

3.1. Introduction to PLIF 

Planar laser-induced fluorescence is a well-established non-intrusive laser diagnostic used to study a 

wide range of fluid mechanic problems, including hypersonic flow.
13

  Typically, a laser beam is expanded 

using sheet forming optics and directed into a region of interest in the test section of a hypersonic flow 

facility. Optical access into the test section allows for a detector, normally a digital camera (CCD or 

CMOS) with an intensifier, to image the fluorescence emitted from a tracer species that interacts with the 

laser sheet in the flow. PLIF is most commonly used as a qualitative visualization technique to observe 

various fluid mechanic and combustion features in high-speed flows. While PLIF can be used for 

molecular tagging velocimetry (MTV) that is described in Section 4.  Figure 3.1 shows a high-level 

schematic of an example PLIF visualization experiment to observe the separated near wake behind a 

hypersonic re-entry vehicle model. In this scenario, a PLIF tracer species is injected into the wake via the 

sting.    

 

3.2. Basic Theory of PLIF 

Common tracer species used in PLIF visualization experiments of hypersonic flows include iodine (I2), 

krypton (Kr), nitric oxide (NO), hydroxyl radical (OH), and toluene (CH3).
82-87

 NO and OH can occur 

naturally in certain flowfields.  The absorption of photons from the laser excites a portion of the tracer 

species population to a higher energy state, setting the fluorescence process in motion. As indicated in the 

left schematic of Fig. 3.2, after absorption the excited species quickly return to a lower energy state, 

resulting in the emission of photons (i.e. fluorescence). Typically, the detector collects light at 

wavelengths longer than that of the laser, while spectral filters are used to block the laser’s wavelength 

Figure 3.1 PLIF flow visualization setup; image (right) reproduced from Ref. 81, with permission from 

the authors. 
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(reducing scattered light interference). Since the fluorescence emits isotropically, only a small fraction of 

the emitted light is captured by the lens and directed to the camera. The camera can be operated with an 

image intensifier whose role is to gate the signal, amplify the signal, and in some cases convert the signal 

from the UV to the visible region where cameras are more sensitive. The right drawing of Fig. 3.2 shows 

the spectral profiles of a broad-band and narrow-band laser along with a sketch of a typical absorption 

profile. Since tunable lasers can adjust the wavelength of the laser, flow visualization experiments 

normally have the centers of the absorption and laser profiles to be coincident, whether a broad-band or 

narrow-band laser is used. If the laser is spectrally scanned during a wind-tunnel run, the convolution of 

these profiles (i.e. overlap integral) results in a spectrum, which can be directly compared with simulated 

excitation spectra from software (e.g., LIFBASE).    

 

Quantitative thermodynamic (pressure, temperature, density, mole fraction) and flow (velocity) 

measurements can be extracted through the analysis of the spectral position, shape and/or magnitude of 

one or more PLIF transitions obtained in an experiment. Thermodynamic, flow, and spectroscopic 

transition dependencies are shown below in the low-excitation, two-level, LIF signal (Sf) equation:
13,88,89

 

𝑆𝑓 = 𝜒𝑠𝑁𝑇(𝑃, 𝑇)𝐵12(𝐽", 𝑣")𝐹𝐵(𝑇, 𝐽", 𝑣")𝐼𝐺(𝜒𝑠, 𝑃, 𝑇, 𝑈)Φ(𝜒𝑠, 𝜒𝑖, 𝑃, 𝑇)𝑡det𝑉
Ω

4𝜋
𝜂         (3.1) 

where 𝜒𝑠, 𝜒𝑖 , 𝑁𝑇 , 𝐵12, 𝐹𝐵, 𝐼, 𝐺,Φ, 𝑡det, 𝑉, Ω, 𝜂, 𝑃, 𝑇, 𝑈, 𝐽", and 𝑣" are the fluorescence species mole fraction, 

collisional species mole fraction, total population of molecules per unit volume, Einstein B absorption 

coefficient, Boltzmann fraction, laser irradiance, spectral overlap integral, fluorescence yield, detection 

time of the detector/camera, volume probed by the laser, detection, solid angle, the detector efficiency of 

the camera being used, pressure, temperature, velocity, rotational quantum number, and vibrational 

quantum number, respectively. If PLIF measurements can be obtained with a fixed optical system at 

steady flow conditions, then many of the terms in Eq. 3.1 can be cancelled if a ratio of Sf is considered.  

The left-most drawing in Fig. 3.3 shows the effect of translational temperature on the spectral width of 

a single transition while the right drawing shows the effect of rotational temperature on the relative 

amplitudes of two transitions in the same vibrational band. Note that the overbar indicates normalized 

Figure 3.2 Fluorescence energy diagram (left); spectral overlap of laser and absorption (right). 
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values. Vibrational temperature affects the relative amplitudes of transitions in a similar way to rotational 

temperature, if the transitions being compared have different vibrational quantum numbers. If the width or 

relative amplitudes of transitions can accurately be extracted from experiments, and other dependencies in 

Eq. 3.1 can be controlled, then the corresponding translational, rotational, and/or vibrational temperatures 

can be measured. Similarly, Fig. 3.4 shows how the spectral width and position of the transitions are 

affected by pressure and the gas velocity component coincident with the laser’s direction. Tracer species 

traveling towards the laser source experience a blue-shift in their absorption line-shape, which results in a 

red-shift of their transition profile. Conversely, tracer species traveling away from the laser source 

experience a red-shift in their absorption lineshape, resulting in a blue-shift of their transition profile. The 

Doppler shift of the transition, (ΔDS) is related to the ratio of the gas velocity component in the laser 

direction to the speed of light.  

 

 

Accurate measurements of the spectral shifts from PLIF data can be used for pressure measurements 

and/or Doppler-shift velocimetry. Finally, since the LIF signal is proportional to the tracer species 

concentration, it is possible to obtain density or relative mole fraction measurements by analyzing the 

magnitude of the fluorescence signal. Often, these techniques rely on the comparison to LIF obtained 

from a reference gas cell at known concentrations of the tracer species. The transient decay in the LIF 

signal is related to the rate of collisional quenching, which is included in the fluorescence yield term (Φ) 

in Eq. 3.1. Therefore, if the decay rate of a LIF signal can be obtained from a photodiode (PD) or 

photomultiplier tube (PMT), then a correction for a concentration measurement is possible. If the 

Figure 3.3 Transition dependence on translational (left) and rotational (right) temperatures. 

Figure 3.4 Transition dependence on translational pressure (left) and gas velocity (right). 
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sensitivity of the LIF signal to temperature and concentration can be minimized or taken into account 

(using equation of state), then pressure can be extracted.  

Note that PLIF can be used for molecular tagging velocimetry (MTV), but such applications will be 

treated in Section 5. 

3.3. Examples of PLIF 

3.3.1. Flow Uniformity and Visualization  

PLIF has often been used to assess flow uniformity. For example, O’Byrne et al. performed NO PLIF 

measurements to investigate the flow uniformity (see Fig. 3.5) downstream of a Mach 7.9 nozzle in the 

T2 free-piston shock tunnel facility at the Australian National University.
92

 A Lambda Physik excimer 

laser was used to pump a ScanMate2 dye laser and frequency doubled to produce 226 nm of light for the 

measurement. PLIF measurements were used to identify the entrainment of cold boundary layer gas as 

one the causes for the non-uniformity. Lam et al. performed Kr PLIF measurements in a Mach-6 Ludwieg 

tube hypersonic wind tunnel.
90

 They were able to show good agreement for shock shape between PLIF, 

schlieren, and CFD. Jiang et al. performed 10 kHz NO PLIF in the Calspan University at Buffalo 

Research Center’s (CUBRC) 48-in Mach 9 hypervelocity shock tunnel using a custom pulse burst laser.
91

 

Flow visualization of a jet in cross-flow was performed with the technique.  

 

Although flow visualization is normally used for qualitative comparisons, quantitative information can 

be extracted through image analysis. For example, McRae et al. performed proper orthogonal 

decomposition and autocorrelations of PLIF data from a supersonic combustion experiment at the 

University of Virginia Supersonic Combustion Facility (UVaSCF).
93

 The analysis helped show how fuel 

Figure 3.5 Flow uniformity (middle, right) from NO PLIF in a shock tunnel (left); adapted from Ref. 

92, with permission from the authors. 
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equivalence ratio can effect length scales associated with combustion. Inman et al. performed statistical 

analysis of NO PLIF data obtained in a Mach 5 arc-jet flow in NASA Langley’s Hypersonic Materials 

Environmental Test System (HyMETS).
94

 Observed fluctuations in NO PLIF signal at different tunnel 

enthalpy conditions were used to characterize the HyMETS facility. Simultaneous NO and O-atom LIF 

freestream measurements were also performed in the HyMETS facility at various tunnel enthalpy 

conditions.
83

     

3.3.2. Rotational and Vibrational Thermometry 

Analysis of the PLIF spectra from multiple transitions has been used to extract rotational and 

vibrational temperatures. Beck et al. performed rotational LIF thermometry measurements in the 

freestream and across a bow shock of a model in the High Enthalpy Shock Tunnel Göttingen (HEG).
95

  

McDougall et al. performed rotational thermometry from NO PLIF data obtained in a Mach 8.2 

hypersonic boundary layer.
104

 A wedge model with an NO seeding slot was placed in the 31-in Mach 10 

wind tunnel at NASA Langley. Figure 3750.6 shows experimental and fitted spectra along with the 

processed temperature profile (x = 85 mm downstream of leading edge). The error was estimated to be 

less than 3% near the edge of the boundary layer with an uncertainty of 4%. Several fitting methods and 

saturation models were assessed in this work. Sanchez-Gonzalez et al. demonstrated an uncertainty of 6% 

to 7% for rotational NO LIF thermometry in a Mach 4.6 flow in a repetitively pulsed facility at Texas 

A&M University.
96

  Shot-to-shot power fluctuations of the probe lasers were determined to be the main 

contributor of uncertainty. Good agreement between LIF thermometry and CFD predictions for a wake 

flow in the same facility was demonstrated in the work. Cecil and McDaniel performed rotational 

thermometry using iodine PLIF over a flat plate positioned in a rarefied Mach 12 flow.
97

 A very low 

temperature (T = 11.5 K) was measured in the flow, but neither the error nor uncertainty were reported.  

 

Figure 3.6 Rotational temperature (right) extracted from NO PLIF spectra (left) in a Mach 8.2 boundary 

layer in a blowdown tunnel; adapted from Ref. 98, with permission from the authors. 
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Palma et al. performed both rotational and vibrational temperature measurements in a Mach 7 

nozzle flow of the T2 shock tunnel.
99

 Simultaneous measurements allows for the investigation of 

thermal non-equilibrium, which is a major challenge in hypersonic flow modeling.
100

 It was 

determined that fluctuations in the distribution of energy amongst the cavity modes of the laser 

contributed the most to uncertainty (25%) in a single image. The strategic choice of the 

transitions, which ensured a wide separation in rotational quantum numbers, reduced the 

uncertainty associated with the subsequent temperature measurement (4%). Adverse effects of 

saturation on the temperature were minimized by intentionally saturating transitions in weak 

braches to the same level (I/Isat ~ 2%).  

 

3.3.3. Translational Thermometry 

Takayanagi et al. performed translational temperature measurements in the freestream and post-shock 

region ahead of a sample in the 750kW arc heated wind tunnel at the JAXA Chofu Space Center.
101

 As 

shown in Fig. 3.7, a laser scan was used to extract the spectral width of a transition of atomic oxygen. An 

Nd:YAG (Spectra-Physics Quanta-Ray) laser was used to pump a ScanMate2E dye laser (Lambda 

Physik) and then frequency doubled in a BBO-crystal to produce 225.65 nm light needed for the two-

photon transition of atomic oxygen. Although neither uncertainty nor accuracy were reported in the work, 

the scatter in Fig. 3.7 (right) is approximately ±1000 K, which is 100% and 11% of the freestream and 

stagnation temperatures, respectively.  

3.3.4. Mole Fraction  

Rossmann et al. performed mixture (mole) fraction measurements of a mixing layer (Mach 5.1 and 0.3 

streams) in a high-stagnation enthalpy shock-tunnel-fed mixing facility.
102

 Nitric oxide was generated 

naturally in the high-temperature stagnation air produced in the facility. The left drawing in Fig. 3.8 

shows the tunnel configuration that produced the mixing layer. A relatively temperature-insensitive 

 

Figure 3.7 Translational temperature (right) extracted from O-atom LIF spectra (middle) for an arcjet 

(left); adapted from Ref. 101, with permission from the authors. 
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transition (J” = 18) of NO was chosen such that the uncertainty in the mixture fraction did not exceed 

10% over the expected temperature range. Other errors due to laser attenuation (<2%), local shock waves 

(<4%), and random shot noise (<7%) were also discussed. The resulting mixture fraction plot is shown in 

Fig. 3.8 (right), with select line plots.      

 

Gamba et al. performed tracer number density measurements in a Mach 2.3 flow using toluene PLIF. 

Using temperature data measured using ratio thermometry, relative mole fraction measurements were 

extracted.
103

 McDougall et al. extracted off-body mole fraction in a Mach 8.2 boundary layer in the 31-in 

Mach 10 facility.
104

 An NO mass flow controller was used using combination with the PLIF data to 

perform the measurement. The measurement uncertainty varied throughout the boundary layer, but was 

maximum near the wall (~ 25%).   

3.3.5. Density 

Balla and Everhart used iodine PLIF to measure air density in the near wake of a multipurpose crew 

vehicle model in NASA Langley’s 31-in Mach 10 facility.
105

 A calibration cell of known density was 

used for the measurement. The uncertainty of the wake density measurement was reported to be 7% (~1% 

of freestream density). Fletcher and McDaniel used iodine LIF to measure density, velocity, and 

temperature in a Mach 2 flow with a transverse jet.
106

 The uncertainty for the density measurements was 

not reported. Narayanaswamy et al. obtained density measurements in a Mach 4.5 underexpanded jet 

using krypton PLIF.
107

 An assumption of constant self-quenching cross-section and isentropic flow was 

used to compute the density and temperature fields. Measurements of density showed good agreement (< 

7%) with predictions from CFD.  

 

Figure 3.8 Mixture fraction (right) extracted from NO PLIF in a Mach 5.1 mixing layer (left). Adapted 

from Ref. 102, with permission from the authors. 
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3.3.6. Pressure  

The majority of supersonic pressure measurements reported in the literature are below Mach 5. 

Lachney and Clemens extracted the pressure field in the near wake of a thick plate in a Mach 3 flow (see 

Fig. 3.9) using NO PLIF.
108

  

 

The pressure dependence of the LIF signal through NT was exploited in the low-quenching limit 

(Q<<A). In this case, the LIF signal becomes linearly proportional to pressure and has a non-linear 

dependence on temperature, which was also measured using ratio thermometry. The relationship between 

the pressure and temperature uncertainties was discussed in detail. The error of the PLIF pressure 

measurements was reported to vary between 10% and 30% based on comparisons to side-wall pressure 

transducers.  

Lemoine and Leporcq used iodine LIF to measure pressure in supersonic underexpanded jet.
109

 

Transition and conditions were chosen to minimize temperature effects on the measurement. The 

accuracy of the method, determined using a static vessel, was 5%. Hiller and Hanson performed similar, 

but planar (2D), pressure measurements using iodine PLIF in a Mach 1.5 underexpanded jet.
110

 The 

uncertainty was reported to be 8%. 

3.3.7. Doppler-shift Velocimetry 

Inman et al. performed NO Doppler-shift velocimetry in a Mach 5 flow in NASA Langley’s HyMETS 

arc-jet facility.
94

 Figure 3.4. 10 shows the resolved spectra at quiescent flow conditions compared to red- 

and blue-shifted transitions. Radial velocity was extracted from the Doppler shift and combined with 

molecular tagging velocimetry (MTV) results for the axial velocity component to produce the middle 

image in Fig. 3.10. Uncertainty in the radial velocity varied from ±26 m/s (5%) to ±62 m/s (~13%). The 

Figure 3.9 PLIF pressure measurement in a Mach 3 wake. Adapted from Ref. 108, with permission 

from the authors. 
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main contributor to the uncertainty was noise in the spectra, which is related to laser power fluctuations. 

Asymmetric error bars associated with the uncertainty are shown on the right image of Fig. 3.10.  These 

radial velocity measurements were combined with flow tagging velocimetry in the same experiment to 

produce flow vectors shown in the middle panel of Fig. 3.10. 

 

Danehy et al. performed NO PLIF Doppler-shift velocimetry of a hypersonic, separated flow over a 

cone with a Mach 7 freestream.
111

 The PLIF spectra were acquired in the T2 free-piston shock tunnel on a 

shot-by-shot basis. Uncertainties in the freestream were estimated to be ±50 m/s (~10% of maximum 

radial velocity). Hruschka et al. performed two-component Doppler-shift PLIF velocimetry in the T-

ADFA free-piston shock tunnel (Mach 10).
112

 Uncertainty of the radial freestream velocity was reported 

as ±50 m/s (~2% of axial freestream velocity or 10% of maximum radial velocity in wake). Takayanagi et 

al. performed Doppler-shift velocimetry using O-atom LIF in JAXA’s 750 kW arc-jet.
101

 The flow 

velocity difference between the freestream and shock layer ahead of the sample was determined to be 

3,600 ±400 m/s (~11%). Suess et al. used two-photon LIF to obtain Doppler-shift velocimetry, 

translational temperature, and mass fraction in the NASA Johnson Space Center’s arc-jet facility.
113

 The 

LIF measurements were combined to produce total enthalpy measurements. Although the uncertainty in 

the velocity measurements were not reported, scatter in the results were approximately ±500 m/s (~10%). 

Finally, McDaniel et al. performed iodine PLIF Doppler-shift velocimetry in a Mach 5 underexpanded 

jet.
114

 Good agreement between the experiment and CFD predictions were reported with a measurement 

uncertainty of 2%.   

 

 

Figure 3.10 Doppler-shift velocimetry (middle, right) extracted from NO PLIF spectra (left) in a Mach 

4 arcjet; Adapted from Ref. 94, with permission from the authors 
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3.4. Conclusions for PLIF 

Laser-induced fluorescence has been used as for non-intrusive measurement of various quantities 

(thermodynamic and flow) in hypersonic flows. Since modern quantitative PLIF techniques typically 

rely on image analysis, flow visualization data can also be acquired in the process. Advances in 

digital camera and intensifier technology result in PLIF data with fine spatial resolution (<0.1 mm), 

short gate times (~ 100 ns), and high signal-to-noise ratio (SNR). The ability to block laser scatter 

with a spectral filter, but passing fluorescence, which occurs at longer wavelengths, also improves 

signal quality near surfaces. While some single- or two-laser PLIF techniques can provide a 

measurement on a single-shot basis (typically 10 Hz), many require a spectral scan over an 

absorption profile that can take much longer (>60 s). As a result, these longer-duration PLIF 

techniques can only provide a mean measurement in a continuous flow facility operating at steady 

conditions, or a mean measurement based on an accumulation of runs in an impulse facility.  The 

recent development of pulse-burst lasers for PLIF have allowed for multiple measurements to be 

obtained in a single run of an impulse facility (e.g., shock tunnel). While seeding of tracer species is 

sometimes required, many hypersonic flow facilities naturally produce the required tracer species at 

the high stagnation temperatures.  

The major drawbacks of PLIF compared to absorption spectroscopy, which is a closely-related 

technique, are cost, complexity, and safety. Lasers used for PLIF are typically higher power, larger, 

and more expensive compared to systems used for absorption spectroscopy. Many of the PLIF tracer 

species are toxic and require laser light in the ultraviolet (UV) spectrum. The production of UV light 

from a PLIF laser typically requires multiple sub-systems (e.g., pump laser, dye laser, frequency 

mixing unit), each producing light at different wavelengths. As a result, multiple laser safety goggles, 

in combination with a carefully-planned safety procedure, are required when tuning the laser. On the 

other hand, PLIF laser systems are simpler than, and produce beams of lower energy than alternative 

techniques like CARS. 
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4. Molecular Tagging Velocimetry (MTV) 

4.1. Introduction to MTV 
 

Molecular tagging velocimetry (MTV) encompasses a broad class of non-intrusive optical techniques 

that allow for velocity measurements through the utilization of molecular flow tracers. In this method, one 

or more lasers are used to excite (or “tag”) molecules in the flow, causing luminescence at a point or 

along a line. The tagged region of fluid is then imaged at two or more time delays, and the ratio of the 

calculated Lagrangian displacement to the time between images yields an estimate of the flow velocity. 

Depending on the particular MTV method used, molecular tagging can measure three-component velocity 

and acceleration, as well as scalars such as concentration, pressure, and temperature. 

Having been successfully implemented to provide velocity measurements in flow regimes ranging 

from subsonic to hypersonic, the applicability of MTV is exceedingly wide-ranging while the limitations 

of molecular tagging depend on the specific technique being utilized. Provided the presence of an 

appropriate tracer molecule, velocity can be determined as long as the luminescence from excited 

molecules is sufficiently high to be detected and tracked. Consequently, MTV allows not only for 

unseeded measurements where the tracer molecule is naturally present in the testing environment (e.g. N2 

in air/nitrogen flows or NO in high enthalpy flows), but also measurements in any flow where atomic or 

molecular tracers may be produced or introduced. Theory of the MTV technique has been developed and 

discussed in Refs. 13, 115, and  116. A number of review articles have also been written summarizing the 

technique.
117-120

 

4.2. Basic Theory of MTV 

One of the many advantages of MTV is the simple setup needed to implement the technique. For some 

methods, one laser, a single camera, and a flow containing tracer molecules are the only requirements for 

performing velocimetry. A typical MTV experimental setup is shown in Fig. 4.1, where a laser beam 

enters the field of view of the camera and tags a region of fluid. A reference image is captured at the time 

of the tagging, and after a small time (Δt) the tagged molecules have advected downstream with the flow 

and a second image is obtained showing the signal displaced by Δx. An estimate for the velocity can then 

be obtained by V = Δx/ Δt. This one-component measurement is often used to provide single-shot velocity 

profiles; however, MTV can be extended to afford two-component measurements by tagging a grid 

pattern or point, rather than a line. Three-component velocity measurements have also been made by 

providing two (preferably orthogonal) views of the tagged region.
121
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Traditionally, researchers captured time-delayed images on a single-frame detector, and results were 

compared against an initial reference image. In early MTV experiments, the reference image was captured 

once at the start of the experiment and was assumed to remain stationary for all subsequent time-delayed 

images. This introduced errors attributable to shot-to-shot displacements in the position of the initial 

tagged region caused by effects such as beam steering or movement of optics due to facility vibrations. To 

help mitigate these effects, later experiments included a second single-frame detector (with a field-of-

view matched to the first) so that a reference signal could be captured for each time-delayed image.
123

 

However, this method introduced issues of its own associated with camera alignment and field-matching 

to sub-pixel accuracy. With the advent of the interline-transfer CCD camera, the unfounded assumption of 

a stationary initial reference could be avoided by offering the same capability as the two-detector method, 

but without the need for tedious alignment of multiple detectors or the associated errors. With more recent 

advancements in detector technology, researchers are now able to capture high resolution digital images 

at ultra-high speeds (hundreds of kHz). This allows for an initial reference image to be captured, followed 

by multiple time-delayed images, providing not only more precise velocity estimates, but also 

acceleration and signal lifetime measurements. 

 

 

 

 

 

Figure 4.1. Simplified typical MTV experimental setup. Adapted from Ref. 122. Also shown are two 

images illustrating a tagged-flow image at t=0 and a displaced tagged-flow image at t=Δt.  Modified 

and reprinted with permission of the authors. 
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    Mechanism 1                                 Mechanism 2                                  Mechanism 3         Mechanism 4 

Figure 4.2. The different mechanisms of MTV. Adapted from Ref. 115. M and M* designate a 

molecule in its ground and electronic excited state, respectively, and P indicated the formation of a new 

molecule. Solid arrows describe radiative transitions and wavy arrows indicate nonradiative transitions. 

The excitation lines are color coded to emphasize the number of different frequencies typically needed 

for each experiment. Processes denoted by black arrows occur spontaneously and don’t require a laser.  

The different diagrams summarize the photochemistry and photophysics that give rise to the various 

MTV techniques. Modified and reprinted with permission of the authors. 

 Though the concept of tagging molecules and tracking the marked region over time to determine flow 

velocity is common for all MTV methods, the details of the tagging mechanism is dependent on the 

particular technique considered and the flow parameter(s) being measured. There are four basic 

mechanisms (as defined in Ref. 115) comprising molecular tagging techniques: absorbance, vibrational 

excited-state fluorescence, photoproduct fluorescence, and direct luminescence. A schematic illustrating 

these different mechanisms is given in Fig. 4.2. In the first of these mechanisms, absorbance, a laser is 

used to electronically excite a molecule which then nonradiatively transitions to another molecule. Since 

the product molecules are more strongly absorbing than the original ground-state molecules, the tagged 

region of fluid appears darker when illuminated by a secondary (either a white-light or laser) source.
124-128 

Littleton et al. used this technique to make freestream velocity measurements with 1% error in a Mach 6.7 

flow.
129

 This mechanism is used in laser-induced photochemical anemometry
130

 (LIPA), and unlike the 

other three methods (which utilize luminescence to tag the flow), this is the only MTV technique that 

relies on measuring absorbance. 

The second mechanism, vibrational excited-state fluorescence, is used in the Raman excitation and 

laser-induced electronic fluorescence (RELIEF) technique. Originally reported by Miles et al., RELIEF is 

a multi-laser method that tags the flow by vibrationally exciting molecular oxygen via Raman 

pumping.
131-135

 This technique is valuable in that the molecular tracer (oxygen) is naturally present in 

most hypersonic facilities; however, its reliance on three frequencies to tag the fluid makes it challenging 

to implement. Additionally, this method is limited to temperatures below 750 K since oxygen molecules 

are vibrationally excited above this temperature, making tagged molecules nearly indistinguishable from 

the untagged fluid.
136

 The RELIEF method has shown potential precision of approximately 1 m/s for 

single shot images, and sub-m/s for time-averaged images.
137
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In photoproduct fluorescence, the third MTV mechanism, a laser is used to photo-dissociate a non-

tracer molecular species to form a tracer product species that may then be probed with a second laser. 

There are many techniques that utilize this mechanism for molecular tagging, and each is named 

depending on the tracer used to tag the flow. In hydroxyl tagging velocimetry
138-143

 (HTV), photo-

dissociation of H2O molecule is used to generate the OH radical. The ozone tagging velocimetry
140,144,145

 

(OTV) method uses ozone (O3) created from oxygen (O2) as the tracer. Photosynthesis of metastable 

krypton atoms is used in krypton tagging velocimetry
162-165

 (KTV). Nitric oxide laser-induced 

fluorescence
146-148

 (NO-LIF) utilizes NO photo-dissociated from N2O,
149

 NO2,
146

 or N2/O2. Air photolysis 

and recombination tracking (APART) is another velocimetry technique that utilizes N2 and O2 to make 

unseeded measurements in air.
150,151

 While nitric oxide is naturally present in shock tunnels and arc-

heated facilities, it is not present in most types of facilities and is corrosive and toxic if seeded in the flow. 

These methods generally have precisions of 0.1-1%, and measurements rates of 10 Hz; however, slightly 

less precise measurements (~2%) have been made at 500 kHz.
152

 

The fourth and final mechanism, direct luminescence, uses a single laser to produce a long-lived 

luminescent excited state. Some examples of this technique include acetone tagging velocimetry,
153,154

 

iodine tagging velocimetry,
155

 and phosphorescence of biacetyl molecules.
156

 Another promising class of 

methods involves using a laser to dissociate molecular nitrogen into atomic nitrogen, thereby tagging the 

flow through tracking of the photons emitted during recombination. Since molecular nitrogen is present in 

most hypersonic facilities, this MTV class allows for unseeded measurements of velocity. If a 

femtosecond laser is used to dissociate the N2, this is known as femtosecond laser electronic excitation 

tagging
157

 (FLEET). It should be noted that FLEET thermally perturbs the flow and the laser can 

potentially damage models, windows, and facilities. Quadrupling the laser frequency allows for a resonant 

version of the tagging mechanism, providing a less thermally-perturbative method known as selective 

two-photon absorptive resonant FLEET (STARFLEET).
158

 A picosecond laser can also be used to 

dissociate the N2 molecule in a high rep-rate technique known as picosecond laser electronic excitation 

tagging (PLEET).
159

 While PLEET allows for seedless velocimetry at 100 kHz, these methods typically 

provide measurement rates of 1 kHz and have demonstrated precisions near 1% (with some methods 

allowing for precisions below 0.5%).
169

 

4.3. Examples of MTV Measurements 

Many of the aforementioned MTV techniques have been applied in the hypersonic regime to yield 

velocity results. One such technique is Krypton Tagging Velocimetry (KTV), where krypton can be 

seeded locally or globally into the flow and used as a tracer by either: a) photosynthesizing metastable Kr 

atoms, or b) locally ionizing the Kr to trace movement. The use of a metastable noble gas as a tagging 



 

42 

 

 

velocimetry tracer was first suggested by Mills et al.
160

 and Balla and Everheart.
161

 KTV has been 

demonstrated as a two-laser/one-camera technique using photosynthesized metastable Kr as tracer,
162

 and 

more recently as a one-laser/one-camera technique with ionized Kr as the tracer.
163

 To date, KTV has 

been shown to work with 1% Kr global seeding for high-speed N2 flows and 5% Kr global seeding in 

high-speed air flows. Applications include: 1) small, underexpanded air or N2 hypersonic jets;
162,163

 2) 

mean and fluctuating turbulent boundary-layer profiles in a Mach 2.7 N2 flow;
164

 and 3) twenty 

simultaneous profiles of streamwise velocity and velocity fluctuations in a 20x20 mm area in a N2, Mach 

2.8 shock-wave/turbulent boundary-layer interaction.
165

  Krypton is used as a tracer species for 

diagnostics because it is nominally thermochemically inactive at atmospheric or typical high-speed wind-

tunnel flow conditions. As such, it is safe/simple to implement in the lab and does not distort the mean 

flow of interest when introduced in dilute concentrations. That is, there is the potential for implementation 

in flows where the thermochemical state of the gas is difficult to prescribe or predict (e.g., a combustion 

environment
166,167

 or when introduced in the high-temperature/pressure reservoir of a high-speed wind 

tunnel). 

Recently, krypton tagging velocimetry (KTV) was employed in the Arnold Engineering Development 

Complex (AEDC) Hypervelocity Wind Tunnel Number 9 (T9) to return freestream velocity profiles at 

four tunnel conditions. These experiments were performed with the two-laser/one-camera approach. To 

make nonintrusive KTV measurements, Mustafa et al.
163

 used 532 nm output from an Nd:YAG laser to 

pump a dye laser; the dye laser then output a 644.1 nm beam which was frequency-tripled to produce a 

214.7 nm tagging (or “write”) laser beam. This write beam tagged krypton which was seeded globally 

throughout the base flow. The “read” laser system consisted of an Nd:YAG laser which pumped a dye 

laser at 532 nm to produce a 769.5 nm beam. The read laser beam was then passed through sheet-forming 

optics to create a “read sheet” that re-excited the metastable tagged Kr tracer atoms. Images of the “write” 

and “read” lines were captured on a Princeton Instruments PIMAX-4 camera at 10 Hz. Typical images are 

shown for the Mach 10 case in Fig. 4.3a, and for the Mach 14 case in Fig. 4.3d. Velocity is extracted for 

every row of each dataset using a Gaussian peak finding algorithm to find the line centers of the reference 

“write” and shifted “read” signal. A sample velocity profile is shown in Fig. 4.3b for the Mach 10 flow, 

and in Fig. 4.3e for the Mach 14 case. KTV velocity measurements are also shown in time compared 

against the T9 conventional method in Fig 4.3c and 4.3f for the Mach 10 and Mach 14 conditions, 

respectively. Standard deviation of the freestream velocity profiles fell within a range of 0.2-1.25% and 

showed agreement with T9 calculations to approximately 2%.
168

 

Krypton gas-bottle cost is a potential issue for implementation of KTV efforts. Estimates indicate that 

the seeding cost per run of 1% Kr mole fraction ranges from ≈10 USD (e.g., Ludwieg tubes, shock 
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tunnels, and moderate reservoir pressure blow-down facilities) to ≈100 USD in large-scale, high-

reservoir-pressure, long-duration (10 second) blow-down hypersonic tunnels (e.g., Tunnel 9 at AEDC 

White Oak).
162

 The cost of using globally seeded KTV in a large-scale, continuous, high-speed wind 

tunnel would be higher still; however, cost concerns could be alleviated by utilizing local seeding. 

 

               (a)                                  (b)                                                        (c)  

 

               (d)                                   (e)                                                       (f)  
 

Figure 4.3. KTV results from AEDC Tunnel 9. Write and read lines for (a) Mach 10 and (d) 

Mach 14. Freestream velocity profile for (b) Mach 10 and (e) Mach 14. Freestream velocity as 

measured by KTV and the T9 conventional method for (c) Mach 10 and (f) Mach 14.  From Ref. 

168, reprinted with permission of the authors. 
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                                             (a)                                                                  (b) 

 

                                 (c)                                                                  (d) 

Another MTV method proven at hypersonic speeds in AEDC’s T9 is the FLEET technique. Like KTV, 

FLEET was utilized to obtain time-resolved freestream velocity measurements at Mach 10 and Mach 14; 

however, unlike KTV, FLEET allowed for unseeded measurements in both air and nitrogen at 1 kHz. 

This was achieved by using a single 800 nm Ti:Sapphire laser to excite and dissociate naturally-occurring 

nitrogen molecules. Images of the luminescence resulting from recombination of the nitrogen atoms were 

captured using a gated image intensifier with a high-speed CMOS camera, which allowed for capture of a 

reference FLEET line and multiple delayed lines. Example single-shot FLEET images are shown at 

several delays in Fig. 4.4a and 4.4b for the Mach 14 and Mach 10 flows, respectively. Displacement 

between FLEET lines was used to give an estimate of the flow velocity, and velocity measurements are 

shown versus the T9 predicted value as a function of time in Fig. 4.4c for Mach 14, and Fig. 4.4d for 

Mach 10.  FLEET velocity results showed “remarkable consistency” with the T9 prediction, and 

measurement precision below 0.5% was attained.
169

 

Figure 4.4. Single-shot FLEET images taken in Mach 14 and Mach 10 freestream flow; dotted line 

marks the position of the laser beam. Time dependency of FLEET instantaneous mean velocity and 

Tunnel 9 velocity prediction for Mach 14 and Mach 10 freestream flow. From Ref. 169, reprinted with 

permission of the authors.  
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Nitric oxide laser induced fluorescence (NO-LIF) employed at the Australian National University 

(ANU) T2 free-piston shock tunnel is a third example of MTV applied to hypersonic freestream flows. In 

this study, output of an excimer-pumped dye laser is frequency-doubled to create a 225 nm laser beam. 

This beam was used to tag NO seeded into the test section prior to each shock tunnel run to obtain a 

reference (zero-velocity) image for the subsequent run. The test section was then evacuated, and the same 

laser was used to tag NO during the shock tunnel operation. Images were obtained using an intensified 

CCD camera at several time delays, and example images are shown in Fig. 4.5a-d.  As with the previous 

examples discussed in this section, these tagged lines are used to extract a velocity profile. Three typical 

single-shot velocity measurements are given in Fig. 4.5e, while an average and standard deviation of 

velocity profiles are shown in Fig. 4.5f. Single-shot velocity measurement uncertainty in the freestream 

was found to be 3.5%, based on 90% confidence.
170

 

 

 

(e)                                                                            (f) 

Figure 4.5. NO LIF results. Raw images at taken at time delays of (a) 0 ns, (b) 250 ns, (c) 500 ns and 

(d) 750 ns. (e) Three typical single-shot velocity measurements. (f) Average and standard deviation 

of velocity profiles. From Ref. 170, reprinted with permission of the authors. 
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Though not yet applied in a hypersonic flow, hydroxyl tagging velocimetry (HTV) has been proven by 

Pitz et al. to make measurements of supersonic flow over a cavity which contains some freestream flow 

outside of the cavity.
171 171

 In this study, conducted at the supersonic flow facility in Research Cell 19 at 

the Air Force Research Laboratory, in Dayton, OH, an ArF excimer laser beam (193 nm) was formed into 

a 7-by-7 grid to dissociate H2O and tag the product OH tracer molecules. This grid of tagged molecules 

was then tracked using planar laser-induced fluorescence from an Nd:YAG pumped dye laser with a 

frequency-doubler (282 nm). Fluorescence of the grid was captured using a PIMAX intensified CCD 

camera, which used 2-by-2 binning to improve signal strength. An average HTV reference image is 

shown in Fig. 4.6a. The crossing point on this grid were tracked in post-processing which allowed for 

extraction of approximately 50 velocity vectors of the Mach 2, two-dimensional flow. Mean velocity 

profiles at various streamwise locations are shown in Fig. 4.6b, while RMS velocity profiles are shown in 

 (a)

 

(b)                                                                            (c) 

Figure 4.6. (a) Averaged HTV reference grid. (b) Mean velocity profiles at various streamwise locations. 

(c) RMS velocity profiles at various streamwise locations. From Ref. 171, reprinted with permission of 

the authors. 
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Fig. 4.6c. Error of about 1% was achieved in this study.
171

 HTV can potentially be very useful in 

combustion-heated hypersonic flow facilities which contain ample water vapor in the freestream.     

4.4. Conclusion for MTV 

Molecular tagging velocimetry is a diverse class of measurement techniques that is applicable 

throughout a wide-range of supersonic and hypersonic flow conditions. For MTV to work, a native, 

seeded (locally or globally), or synthesized tracer gas must be present. Additionally, the presence of this 

tracer must be imaged over at least two time delays. The promise of MTV methods is that they provide 

non-intrusive, off-surface measurements that have augmented researchers’ ability to characterize 

hypersonic wind tunnels in new and underexplored regimes. These tools have been put into practice in 

facilities ranging from small-scale, supersonic wind tunnels to large-scale, hypersonic test wind tunnels. 

These new measurements are possible because of recent advancements in laser and detector technology. 

MTV has not only seen rapid improvements in the quality and breadth of data obtained, but also benefited 

from enhanced ease-of-application of its methods. Researchers are working avidly to apply MTV in new 

flow regimes/facilities, as well as working with industry to develop new laser/camera technology to 

further improve MTV capability. 
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5. Focused Laser Differential Interferometry (FLDI) 

5.1. Introduction to FLDI 
 

FLDI enables measurement of short-wavelength, high-frequency density disturbances in a gas that are 

not currently possible with conventional instrumentation such as pressure transducers or hot wires. An 

example experimental setup, methodology of data extraction, and example results are presented. This 

method generally has accuracy of 5%, precision of 5%, and uncertainty of 5%. Measurement can be made 

at >50 MHz, with spatial resolutions of 350 μm and 20 mm in the flow streamwise and spanwise 

directions, respectively. 

5.2. Basic Theory of FLDI 

To measure the freestream tunnel noise and acoustic instability on a slender body in a large-scale high-

enthalpy, hypersonic ground-test facility (such as the T5 reflected-shock tunnel at Caltech), six 

requirements of the diagnostic are clear: 

1) High sensitivity to an unstable quantity in the boundary layer (in this case, density fluctuations), 

2) High temporal resolution of the measurement technique (> 10 MHz), 

3) High spatial resolution to resolve the small wavelength of the disturbance (< 1 mm), 

4) Insensitivity to mechanical vibration, 

5) The capability to have a small focal volume in the freestream or near the surface of the cone, and 

6) A straightforward and repeatable means of extracting quantitative data from the technique. 

 

The FLDI method meets these requirements. Two essential aspects for instability measurement with 

the FLDI method are identified as the ability to make localized measurements and record long, high-

resolution data records. The ability to make localized measurements of fluctuation is necessary because 

the turbulent shear-layers from the facility nozzle can dominate a line-of-sight integrating optical 

measurement technique. The ability to probe only a small volume near the center of the test section 

significantly raises the achievable SNR relative to a line-of-sight integrating scheme. Smeets made 

measurements of localized turbulent fluctuations in a turbulent, free-jet experiment utilizing a system 

similar to the one presented in the next section.
172,173,174

 Advances in technology have been crucial to the 

success of the measurement relative to the time Smeets was executing his free-jet experiments in the 

1970’s at the French-German Research Institute of Saint-Louis. Low cost, high vertical-resolution 

digitizers that are able to operate at high sampling rate for long duration are now available. This allows 

researchers to perform exceedingly detailed measurements at sufficient speed for instability work. 

Additionally, high-speed, low-cost, low-noise amplifiers are also now available. High-quality amplifiers 
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allow researchers to be prudent in how they set up the data acquisition, specifically, how the signal is 

terminated and digitized so that ambient electrical noise (RF) maybe reduced to acceptable levels. 

The example experimental layout discussed here is nominally the same as in Smeets, but the 

dimensions, kinematics, and plane of laser beam separation are specifically designed for the purposes of 

high-enthalpy, hypersonic instability measurement. An annotated schematic of the experimental setup 

used for the examples in this section is presented as Fig. 5.1. The laser used is a Spectra-Physics Excelsior 

diode pumped solid state continuous-wave laser (532 nm wavelength, 200 mW power). The high-quality 

beam (TEM00) does not require additional beam conditioning for use in an interferometer. Following the 

optical path in Fig. 5.1, starting from the laser (L), the beam is turned by a periscope arrangement for 

precise directional control. The beam is expanded by a lens, C1 (10 mm focal length), and linearly 

polarized by P1 at 45O 
to the plane of separation of the first Wollaston prism, W1. The normal to the plane 

of separation of W1 is chosen to be orthogonal to the freestream flow or streamlines in the boundary layer 

of the five-degree, half-angle cone. The prism splits the light by a narrow angle (2 arc minutes) into 

orthogonally polarized beams. The separation of the beams in the streamwise direction is fixed at 175 μm 

by a lens, C2 (300 mm focal length), while the diameter of the beams is reduced to small values in the 

center of the test section. This arrangement creates two beams with orthogonal polarization that are 

slightly displaced in the streamwise direction and traverse much of the same optical path, except near the 

focus. The orthogonally polarized beams do not share the same optical path within ±10 mm of the focal 

point (along the beam direction, centered at A in Fig. 5.1). In this region the beams are calculated to be 

less than 100 μm in diameter, and traverse separate but very closely spaced volumes. It is primarily within 

this small focal region that the diagnostic is sensitive to changes in optical path length (OPL). The spatial 

resolution of the technique (350 μm) is set by doubling the beam spacing to satisfy the Nyquist sampling 

theorem. FLDI is a finite differencing technique and fluctuations with a length scale below this spatial 

resolution may be ambiguously registered at the photodetector. Beyond the beam focus, the optical paths 

are again nearly common and an additional lens, C2 (300 mm focal length), re-focuses the beams. The 

second Wollaston prism, W2, and polarizer, P2, recombine and then mix the orthogonally polarized 

beams, such that the interference will be registered as irradiance fluctuations by the photodetector, a high 

speed (14 ns Rise Time) silicon photodiode.   
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The FLDI technique detects differences in phase primarily due to the density differences at the two 

focal regions, which are separated in the streamwise direction, making the interferometer sensitive to 

spatial density differences in the streamwise direction. A relation between the fluctuations in density and 

output voltage from the photodetector is needed for post-processing. A simple approach to finding this 

relation is found by considering the region within ±10 mm of the focal point, along the beam direction 

(where the optical paths are not common), to be a two-beam differential interferometer. The result is 

                                        
𝛥𝜌

𝜌𝐿
=

𝜆0

2𝜋𝐾𝐿𝜌𝐿
sin−1 (

𝑉

𝑉0
− 1)                                          (5.1) 

where 𝛥𝜌/𝜌𝐿 is the change in density normalized by the local mean density, 𝜆0 is the laser wavelength, 𝐾 

is the Gladstone-Dale constant for the gas being probed, 𝐿 is the assumed integration length of the 

interferometer, and 𝑉/𝑉0 is the instantaneous photodetector voltage normalized by the photodetector 

voltage when the instrument is set to the midpoint of an interference fringe. 

5.3. Examples of FLDI Measurements 

5.3.1. Freestream Noise Measurement in the T5 Reflected-Shock Tunnel
176

 

FLDI has been used to quantify the freestream density perturbations in the T5 reflected-shock tunnel. 

The investigation of reflected-shock tunnel disturbances is motivated by the study
175,177

 of high-enthalpy, 

hypersonic boundary-layer instability and transition. Results are reported here for high-enthalpy, 

 

Figure 5.1. Annotated schematic of the FLDI. TSL, turbulent shear layer; L, Laser; M, mirror; C1, 10 

mm focal length lens; C2, 300 mm focal length lens; P, polarizer; W, Wollaston prism; B, BK7 

window; A, probe volume; D, photodetector; N, nozzle, s1 = 718 mm, s2 = 515 mm, s3 = 300 mm.  

Reprinted with permission of the author.
175
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hypersonic air flows at reservoir enthalpies between 5 and 18 MJ/kg at Mach 5.5 (Fig. 5.2 – Top Right). 

Spectrograms show that the freestream disturbance level is constant throughout the test time (Fig. 5.2 – 

Bottom Right). Power spectral density estimates of each of the experiments are found to collapse upon 

each other when the streamwise disturbance convection velocity is used to eliminate the time scale (Fig. 

5.2 – Left). Furthermore, the disturbance level depends strongly on wavelength. If the disturbance 

wavelength range of interest is between 700 μm and 10 mm, the tunnel noise is measured to be less than 

0.5 % with the FLDI. 

 

Figure 5.2. Left: Wavelength spectrum of tunnel noise time traces. There are two sets of wavelength 

spectrum plots of the same data. The lower amplitude data has not been corrected for the sensitivity of 

the FLDI technique to wavelength (dashed lines). The higher amplitude data has been corrected for the 

sensitivity of the FLDI technique to wavelength (solid lines). Top Right: Filtered time traces of 

 𝛥𝜌/𝜌𝐿 (filter cutoffs: 5 kHz-20 MHz). Each trace is offset 6 % along the ordinate and is 500 us of the 

steady test time. Note that shot 2684 has a notably larger amplitude than the other shots due to an 

experimental blunder. Bottom Right:  Spectrogram (contours of power spectral density plotted in 

time–frequency space) of shot 2693; this illustrates how the spectral content of the fluctuations in the 

free-stream evolve throughout the test time.  Reprinted with permission of the author.
175 

5.3.2. High-Enthalpy, Hypersonic Boundary-Layer Instability Measurement
178,179

 

High-frequency density fluctuations (up to 3 MHz) that precede laminar to turbulent boundary layer 

transition have been detected using FLDI in a high-enthalpy, hypersonic flow. Experiments were 

carried out in the T5 reflected-shock tunnel to generate flows in air, nitrogen, and carbon dioxide with 

speeds between 3.5 and 5 km/s (Mach numbers between 4 and 6) over a 5 degree half-angle cone at 

zero angle-of-attack. Simultaneous measurements are made at two locations approximately midway 

along a generator of the 1-m-long cone. With increasing Reynolds number (unit values were between 2 
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and 5 x 10
6
 1/m), density fluctuations are observed to grow in amplitude and transition from a single 

narrow band of frequencies consistent with the Mack or second mode of boundary-layer instability to 

bursts of large-amplitude and spectrally broad disturbances that appear to be precursors of turbulent 

spots (Fig. 5.3). Disturbances that are sufficiently small in initial amplitude have a wavepacket-like 

signature and are observed to grow in amplitude between the upstream and downstream measurement 

locations (Fig. 5.4). A cross-correlation analysis indicates propagation of wavepackets at speeds close 

to the edge velocity. The scaling of the observed frequency with the inverse of boundary-layer 

thickness and directly with the flow velocity are consistent with the characteristics of Mack’s second 

mode, as well as results of previous researchers on hypersonic boundary layers. 

 

Figure 5.3. Examples of the two principal signatures observed in FLDI signals: (a) broadband, large-

amplitude signal characteristic of locally turbulent flow; (b) narrow-band, small amplitude signal, 

characteristic of a wavepacket in laminar flow. These examples are for an air boundary layer (shot 

2743) with reservoir enthalpy hR=9:1 MJ/kg. Reprinted with permission of the author.
175
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5.3.3. Comparison of Pitot-Pressure Spectra and FLDI Spectra in the NASA Langley 

20-Inch Mach 6 Tunnel
180

 

Work by Chou et al.
180

 compared FLDI freestream measurements recorded over a range of tunnel 

conditions and to spectra recorded by Pitot-probes. The spectra shown in Fig. 5.5 (left) are of relative 

density fluctuations in the 20-Inch Mach 6 freestream for a sweep of unit Reynolds numbers tested and 

two flow-off conditions. The absolute sensitivity of this instrument to density fluctuations has not yet 

been determined so these spectra are in arbitrary units. The solid black curve in Fig, 5.5 (left) shows the 

FLDI measurements with no flow at ambient conditions. The very-narrow spikes in the 20-kHz to 1-MHz 

region are from unidentified electronic noise. The dashed black curve in Fig. 5.5 (left) shows the FLDI 

measurements with no flow while the tunnel is at vacuum. This curve shows that the instrument is 

sensitive to the fluctuations caused by slow leaks in the test box and thus may not show a true noise floor 

 

Figure 5.4. Power spectral density estimates of  𝛥𝜌/𝜌𝐿 for the high-enthalpy air shot series. The 

solid line marks the upstream detector, the dashed line marks the downstream detector. Going from 

a-d is a ramp in Reynolds number. (a) shot 2788: Re = 4.03x10
6
 1/m, nominally quiescent flow, (b) 

shot 2789:  Re = 4.73x10
6
 1/m, 1.5 MHz disturbances growing in amplitude between upstream and 

downstream detectors, (c) shot 2790:  Re = 4.94x10
6
 1/m, beginning of transition to turbulence, (d) 

shot 2787:  Re = 5.08x10
6
 1/m turbulent flow. Reprinted with permission of the author.

175 
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for the FLDI. The main feature of the flow-on data in Fig. 5.5 (left) is the broadband nature of the 

freestream density fluctuations from 1-30 kHz. The solid and dashed green curves illustrate the 

repeatability of the combined instrument for two runs at the highest Reynolds number. This repeatability 

was consistent for the other Reynolds numbers as well.  

A comparison of the power spectra of measured Pitot-probe pressure fluctuations to the power spectra 

of measured density fluctuations is given in Fig. 5.5 (right). Note that the quantities measured by the 

Kulite and PCB pressure transducers and the FLDI instrument are different: the probes measure 

fluctuations in pitot pressure while the FLDI measures fluctuations in density. It is uncertain that flush 

mounted pressure transducers in a Pitot probe configuration produce a faithful representation of the noise 

level in a supersonic or hypersonic freestream.
176

 This is a major motivator for the use of non-intrusive 

optical diagnostics such as FLDI to assess the freestream fluctuation levels. The interaction of freestream 

fluctuations with the bow-shock wave that forms in front of the Pitot-probe may thwart the goal of 

resolving a wide range of disturbance length scales. This interaction is known to be a function of the 

obliqueness and the strength of the shock wave. The complexity of the subsonic flow field behind the 

bow-shock wave may further obscure the fidelity of freestream disturbance measurement, especially in 

the frequency domain. In Fig. 5.5 (right), the power spectra of the Kulite and PCB measurements are 

truncated to the quoted bandwidths of each sensor. At the lowest Reynolds number, the slope and roll-off 

of the FLDI and Kulite spectra agree well for the bandwidth of 1 kHz to 20 kHz. The power spectra of the 

PCB probe data in Fig. 5.5 (right) appears to deviate from the FLDI measurement for the Reynolds 

number shown here. A major difference is that the FLDI is less sensitive to the electronic noise. Further 

work is required to calibrate the FLDI response and assess the differences in the spectra. 

   

Figure 5.5. Left: Power spectral density of measurements made with the FLDI for various Reynolds 

numbers. Right: Qualitative comparison of FLDI spectra and pressure spectra at Re = 7.99x10
6
 1/ft = 

26.3x10
6
 1/m. Reprinted with permission of the author.

180
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5.4. Conclusions for FLDI 

Focused laser differential interferometry has been used to measure high-frequency density fluctuations 

in high-enthalpy, hypersonic flow regimes where other measurement technologies cannot be used. This 

section highlighted FLDI implementation in the Caltech T5 Reflected-Shock Tunnel where the freestream 

and boundary-layer instability fluctuations were measured. Additionally, a comparison of Pitot-pressure 

spectra and FLDI spectra in the NASA Langley 20-inch Mach 6 tunnel was presented. 

One issue with FLDI is that there is some line-of-sight integration with the signal that adds to 

uncertainty of the spectra reported here. That is, the FLDI technique is sensitive at the focus ±15 mm (in 

this implementation; ultimately it will depend on the optical design), but also to a lesser extent past this 

15 mm. To resolve this issue, researchers
181-183

 have been working to derive transfer function formulas 

that may be applied to account for this. To apply these transfer functions to the data, it must be 

transformed into wavenumber space which requires knowledge of the local convective velocity. 

Researchers are also working on a modification to the FLDI setup where two FLDI’s or dual-FLDI (or D-

FLDI) is implemented with a streamwise displacement on the order on 1 mm. This setup enables 

convective velocity measurement. Jewell et al.
184

 first demonstrated disturbance speed measurements 

using cross-correlated D-FLDI in a shock tube, as well as a reflected-shock tunnel boundary layer as part 

of the broader high-enthalpy slender cone campaign. 

Hedlund et al.
185

 used LDI to characterization of Mach 4.5 flow over a flat-plate model with a 30 deg 

compression ramp was performed with low-enthalpy (T0=300 K) and high-enthalpy (T0 = 800–1250 K) 

flow conditions for a wide range of unit Reynolds numbers. Harris et al.
186

 used LDI as an approach to 

characterizing freestream disturbance levels. Sayler et al.
187

 used feedback stabilized LDI for supersonic 

blunt body receptivity experiments. Ceruzzi and Cadou
188

 used FLDI and LDI to investigate fluctuating 

density gradients in a simple turbulent air jet in preparation for making fluctuation measurements in 

larger-scale wind tunnels. This recent bout of activity is indicative of the promise of the FLDI technique 

in high-speed and reacting flow. 
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6. Laser Scattering Techniques  

6.1. Introduction to laser scattering techniques  

The interactions of light and the molecules or particulates within a gaseous medium can provide a 

great deal of insight into the flow properties of the gas. Typical interactions, and measurements thereof, 

include absorption, fluorescence, and light scattering. This section focuses on the measurement of light 

scattering from molecules and particles, with processes broken down into three categories: Mie, Rayleigh, 

and Raman scattering. Mie scattering occurs when light scatters from particles whose diameter is on the 

order of the wavelength of incident light or larger. Scattering from molecules or particles whose diameter 

is much smaller than the wavelength of light is broken down into two categories: spontaneous Rayleigh 

scattering if the scattering is elastic, and spontaneous Raman if the scattering is inelastic. The difference 

between elastic and inelastic scattering is shown in Fig. 6.1. As shown in the energy level diagram, 

scattering occurs when a photon (ℎ𝜈) excites a molecule from its ground state (1) to a ‘virtual’ state (2). If 

the molecule relaxes back to the ground state, emitting a photon in the process, the scattering is 

considered elastic since there is no net energy transfer between the photon and the molecule. Mie and 

Rayleigh are both elastic scattering processes.  If, instead, the molecule relaxes to a different state (either 

rotational or vibrational as in Raman scattering), thereby transferring a quanta of energy between the 

photon and the molecule, the scattering is considered inelastic.  Relaxation to a higher-lying state than the 

initial is termed Stokes Raman scattering, while relaxation to a lower-lying state is termed anti-Stokes 

Raman scattering. Physically, Stokes Raman occurs when the molecule absorbs a quanta of energy from 

the incoming light and anti-Stokes Raman occurs when the molecule imparts a quanta of energy to the 

scattered photon. Such spontaneous scattering is in all directions although the intensity of the scattering in 

different directions varies with angle. 

Typical laser-based techniques which directly measure the light scattering for fluid measurements 

include: Doppler global velocimetry (DGV) which uses Mie scattering, filtered Rayleigh scattering 

 

Figure 6.1.  Energy level diagram showing elastic and inelastic scattering methods. 
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(FRS), interferometric Rayleigh scattering (IRS), and spontaneous Raman spectroscopy (SRS). A typical 

experiment using these techniques would utilize a narrow-linewidth laser, tuned to a specific wavelength, 

shaped into a thin beam, or sheet, in the area of interest and a CCD/CMOS camera for imaging the 

scattering. Simple measurements of the gas density using Rayleigh scattering are possible using the 

aforementioned setup; however other quantities such as velocity, translational temperature, and pressure 

require the use of light frequency discriminators, such as Fabry-Perot interferometers and atomic-vapor 

cells, to measure the spectrum of the Mie/Rayleigh scattered light.  To measure the rotational/vibrational 

temperature or concentration of a species the Raman spectrum needs to be analyzed which requires the 

scattered light to be dispersed, typically via a grating. An additional concern is the signal, or lack thereof, 

especially for Rayleigh and Raman measurements. For Mie scattering, the amount of scattered light is 

proportional to the diameter of the particle squared. Therefore if one needs more signal, a larger particle 

could be used; however, larger particles make for worse tracers, especially at hypersonic speeds. (See 

Section 8 of this manuscript for further discussion of particle lag issues.)  Rayleigh scattering generally 

produces orders of magnitude less signal than Mie scattering since the particles are smaller, and therefore 

requires a higher gas density and laser energy to achieve detectable signal levels. Raman produces even 

less signal, typically by three orders of magnitude. Because of the lack of relative signal, an image 

intensifier or other camera gain mechanism may be necessary to perform Rayleigh and Mie scattering 

experiments for lower density environments typical of supersonic and hypersonic flows.  

6.2. Basic Theory of Laser Rayleigh Scattering Techniques 

6.2.1. Doppler global velocimetry 

DGV, also known as planar Doppler velocimetry (PDV), determines the fluid velocity by measuring 

the frequency shift of light scattering from particles immersed in the fluid, known as the Doppler shift.
189

 

This shift, Δ𝜈, is directly proportional to the velocity of the particle as given by: 

       Δ𝜈 =
(�̂�−�̂�)⋅�⃗⃗� 

𝜆
              (7.1) 

where �̂� is unit vector in the direction of the observer,  𝑖 ̂ is the unit vector in the direction of laser 

propagation,  �⃗�  is the velocity of the particle, and 𝜆 is the wavelength of the incident laser. It is important 

to note that the velocity vector measured by a single DGV observer is in the (�̂� − 𝑖)̂ direction, as shown 

in Fig. 6.2 (left). Basically, the measured component is in the direction that bisects the incident and 

detected light.  In addition, if the full 3-component velocity field is desired, three separate DGV 

observations are required, and, in practice, a fourth observer is sometimes added for robustness.
190

  

The measurement of the Doppler shifted frequency is typically accomplished by measuring the 

absorption of the scatted light imaged through an atomic or molecular vapor filter. The most common 
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molecular vapor filter is Iodine due to its numerous absorption features in the frequency range of 

frequency-doubled Nd:YAG lasers (532 nm) and argon ion lasers (for example at 514.5 nm), and its 

features having steep cut-off frequencies.
191

 Other species such as Mercury and Cesium are generally used 

for 254 nm and 850 nm, respectively. To measure the Doppler shift using a molecular filter, the laser 

frequency is tuned such that the laser frequency plus the nominal Doppler shift induced by the mean 

particle velocity is located at the mid-point along the side of an absorption feature, as shown in Fig. 6.2 

(right). If a particle moves faster than the mean, thereby creating a larger Doppler shift, the Iodine will 

absorb more of the light, and create a darker image. If the particle is moving slower, the image will appear 

brighter.   

 

A typical experimental configuration is shown in Fig. 6.3. A narrow-linewidth, tunable laser passes 

through sheet-forming optics into the region of interest. Imaging the scattered light are two cameras, one 

that directly views the scattered light, known as the reference camera, and one that views the scattered 

light through an Iodine vapor cell, known as the signal camera. The reference image is necessary to 

 
 

Figure 6.2.  (left) shows the geometry of the measured component of velocity and (right) shows the 

working principle of DGV. From Meyers et al.
192

  Reproduced with permission by the authors. 

 

Figure 6.3.  Example 1-view DGV experimental setup. 
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account for inconstancies in the laser sheet and other optical aberrations in the beam path as well as 

variations in seed density. The ratio of these two images yields the absorption, and therefore the Doppler-

shifted frequency. In order to determine the velocity, the frequency of the incident laser must also be 

determined such that the difference can be calculated. Typically this is performed using the same 

signal/reference system as described before, termed the laser frequency monitor (LFM), but instead of 

measuring the scattered light from particles, a small portion of the incident laser is picked off before the 

sheet-forming optics and measured. This method only yields the frequency relative to an absorption 

feature, therefore it is necessary to determine a-priori which Iodine feature is adjacent to the laser. An 

alternative to using an LFM to determine the frequency output of the laser is to use it as a feedback 

mechanism to lock-in the laser frequency, which is possible for some lasers. Variations of DGV, which 

use an interferometer (I-DGV), are able to eliminate the need to tune the laser to specific absorption 

lines,
193

 as well as eliminate the use of the atomic vapor cells entirely.
194

 These I-DGV techniques are 

capable of measuring the Doppler shift more accurately than the standard system, but at the expense of 

optical complexity and temporal resolution. 

The laser used to perform DGV measurements needs to have a narrow linewidth to increase the 

sensitivity and dynamic range of the measurement. As such, typical DGV experiments use continuous 

wave lasers as injection-seeded pulsed Nd:YAG lasers tend to have much higher line-widths (120 MHz) 

compared to an argon-ion laser (10 MHz). In addition, it has been found that these pulsed lasers have 

frequency variations from pulse-to-pulse (of about 80 MHz) as well as spatially across the beam profile 

due to variations in the flatness of the rods.
192

 A pulse-burst laser can give the narrow line-width 

necessary while having pulsed operation, in addition to allowing for MHz rate measurements.
195

  

One of the drawbacks of using the side of the absorption feature to measure the Doppler shift, is that 

the dynamic range of the measurement is limited to the size of the feature. Typically these features are 

around 500 MHz in spectral bandwidth corresponding to roughly 350 m/s, depending on the properties of 

the atomic vapor cell and the observation angle. Measurements outside this frequency range would create 

ambiguity as a single absorption level would correspond to multiple Doppler shifts. Cross-correlation 

DGV (CC-DGV
196

) extends the dynamic range by scanning over multiple absorption features, then 

computes the cross-correlation of the measured absorption and the absorption from the LFM. The peak of 

the cross-correlation is the time-averaged Doppler shift over the scan duration. Cadel and Lowe
196

 report 

measurements with a mean velocity of 600 m/s with measurement uncertainties ranging from 0.5-17 m/s. 

The authors note that the technique itself has an effectively infinite dynamic range theoretically, but they 

are limited to 3000 m/s by domain of their frequency scan. Due to this increased dynamic range, this 
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variation shows promise for high-speed (supersonic and hypersonic) flows; however, it is only capable of 

measuring the mean velocity.  

One of the most common sources of error in a DGV experiment is the registration between the 

reference and signal images for each observation. It is imperative that these images are aligned to sub-

pixel accuracy as even a 0.1 pixel misalignment can lead to a ±5 m/s error.
197

 Additionally, the beam-

splitters used to create the reference/signal paths have 3-5%
192,198

 variation in the split ratio which can 

lead to a ±7 m/s velocity error in fixed wavelength schemes.   

The standard two-cameras-per-view creates an expensive diagnostic since one needs 6-8 cameras to 

perform the planar measurement. Some cost effective variations of the two-camera setup include splitting 

the views onto a single camera (shown in Fig. 6.3), as well as using fiber bundles, where each fiber 

bundle images a different observation angle and all the bundles are imaged onto a single camera. The 

downside of both these options is that they decrease the spatial resolution of the measurement, and in the 

case of the fiber bundles, they decrease the amount of light captured. Variations of the technique seek to 

overcome these limitations. Two-frequency DGV (2𝜈-DGV
198

) minimizes the number of cameras needed 

for each observation from two to one without the need for a split-view configuration, eliminating 

registration issues between the signal and reference views; however since the two laser pulses are imaged 

sequentially this technique is a time-averaged measurement where the data is effectively averaged over 

the time between the signal and reference measurements.  Frequency modulated DGV (FM-DGV
199

) 

removes the need for a reference image entirely, by computing the Doppler shift in the frequency domain 

after modulating the incident laser frequency. By removing the need for a reference image, the 

uncertainty of the measurement is reduced by an order of magnitude in principle. Fischer et al
199

 reports 

minimum standard deviations of 0.02 and 0.04 m/s, with a dynamic range of ±350 MHz or ±240 m/s. As 

with the previous technique, extra temporal information is required such that FM-DGV is a time-averaged 

measurement.  An alternate version of this concept, using four discrete frequencies is the so-called 

frequency-shift-key DGV (FSK-DGV).
200

 Since this technique requires four images to reconstruct a 

velocity field, the temporal resolution is determined by both the rate at which the different frequencies 

can be generated as well as the frame rate of the cameras.  

The major benefits of DGV as a measurement technique are its high signal intensity, leading to low 

uncertainty  (typical 2-3 m/s
201,202

 and optimally ±0.5 m/s
192,203

), and its ability to use small particles, 

when compared to PIV. Since the particles do not need to be individually resolved, they can be smaller or 

the field of view can be larger if sufficient laser energy is available. Both of these situations are beneficial 

to hypersonic free-stream measurements since smaller tracers follow the flow more accurately and larger 

fields-of-view allow for a more complete measurement of the freestream.  
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6.2.2. Filtered Rayleigh scattering (FRS) 

FRS is conceptually very similar to DGV, using the same equipment, but different seeding; molecules 

naturally present in the flow are probed. By using molecular scattering the technique does not require 

seeding, which can be a huge benefit in facilities where adding particles is problematic. Particles are 

difficult to uniformly seed in some flows while in others, particles are not allowed because of 

contamination concerns.  In addition, Rayleigh spectra can be used to measure velocity, pressure, 

temperature, and density simultaneously whereas DGV and PIV typically only measure velocity. The 

velocity measurement is based on the Doppler shift as described earlier; whereas pressure and 

temperature are measured based on the line-shape of the Rayleigh spectra while the gas density is 

measured from the overall Rayleigh signal intensity.  

In order to measure Rayleigh spectra, the laser frequency is typically scanned, and the resulting 

Rayleigh scattering is measured through an atomic/molecular vapor cell. The measured signal is therefore 

a convolution between the Rayleigh line-shape and the absorption properties of the vapor cell. Since the 

absorption properties of the cell can be measured or modeled, the signal can be deconvolved to recover 

the Rayleigh lineshape. It is noted that while the velocity could be theoretically recovered without 

scanning, via the same process as DGV, the sensitivity would be lower due to the broadness of the 

Rayleigh spectra with respect to the molecular absorption features.   

 A very brief explanation of Rayleigh scattering theory is presented herein. For a more complete 

explanation the reader is referred to Miles et al.
191

 In reference to Fig. 6.4 (left), which shows the 

complete light scattering from a diatomic molecule, the Rayleigh spectrum lies closest to the incident 

laser light central to the bands of rotational Raman. This lone spectral feature is caused by the random 

translational motion of the molecules, whereas the bands on either side represent rotational modes, and 

the Stokes/anti-Stokes bands represent vibrational modes. There are two regimes for translational motion. 

At low pressure or high temperature, the motion is thermally dominated leading to a thermally-broadened 

Gaussian spectral profile. On the other hand, if the motion is collision-dominated at the hydrodynamic 

limit, the line-shape shows prominent acoustic sidebands, whose shape is a Lorentzian profile, located at 

frequencies corresponding the speed of sound in the medium. If the experiment is conducted between 

these two regimes (as is commonly the case), the profile has both thermal and acoustic features. If the 

molecule is anisotropic, a portion of the rotational Raman scattering (rotational Q-branch) is added to the 

Rayleigh signal. The combination of these features results in the Cabannes profile as shown in Fig. 6.4 

(left). 
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The combination of the thermal and acoustic processes results in a complex line-shape known as the 

Rayleigh-Brillouin line-shape shown in Fig. 6.4 (right). This line-shape is the combination of the 

Cabannes line-shape generated via Rayleigh scattering and the acoustic sidebands generated from 

‘Brillouin-Mandel’shtam scattering’. The prominence of the acoustic or thermal modes is based on the 

temperature and pressure. Models of this line-shape, most notably the S6 model developed by Tenti et 

al
204

, define a non-dimensional quantity as the ratio between the scattering wavelength to the mean free 

path, known as the y-parameter. This parameter is a function of temperature, pressure, laser wavelength, 

and observation angle, and the effect of changing the y-parameter is shown in Fig. 6.4 (right). It is shown 

that a y-parameter of 0 represents a thermally dominated gas while large values represent a collision-

dominated gas with combinations of the two in between. For FRS, the measured Rayleigh-Brillouin 

lineshape is recovered, and can therefore be fit to the data of the Tenti S6 model to obtain the temperature 

and pressure, while the overall spectral shift (Doppler shift) can yield the velocity. Reported uncertainty 

for FRS measurements, made in a Mach 2 jet, are ±2 m/s (2-3%), ±38 Torr (4-5%), and ±3.2 K (2%) for 

velocity, pressure, and temperature respectively.
205

  

6.2.3. Interferometric Rayleigh scattering (IRS) 

IRS is a technique which spectrally analyzes Rayleigh scattering by isolating specific frequencies 

using a Fabry-Perot interferometer
206

 (etalon), which is made up of two partially-transmitting planar 

mirrors, as shown in Fig. 6.5 (left). This set of mirrors acts as a multiple beam interference device which 

generates an Airy pattern. The image generated by the IRS technique is the convolution of this Airy 

pattern, generated by the etalon, and the spectra of the scattered light, as shown in Fig. 6.5 (right). If the 

scattered light is spectrally narrow (i.e. a single-mode laser) the image appears as thin concentric rings, 

  

Figure 6.4.  (left) shows the scattering components of a diatomic molecular gas (e.g. N) from laser 

illumination, at increasing resolutions, focusing on the elastic Rayleigh scattering and (right) shows the 

Rayleigh-Brillouin profiles for various y-parameters. From Miles et al.
191 

and reprinted with permission of 

the authors.  
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called fringes, whose spacing is determined by the free spectral range of the etalon. If the scattered light is 

spectrally broadened (as the Rayleigh scattering is) the fringes broaden accordingly, and provide a means 

to measure temperature. The velocity can be determined by the spatial shifting of the rings via the 

Doppler shift, and the density can be measured by the amplitude of the signal. The IRS technique can also 

be designed to measure multiple components of velocity on a single detector as demonstrated by Bivolaru 

et al.
207

 where they were able to encode two orthogonal components of velocity onto a single detector by 

placing a mirror on the opposite side of the probed region, along the optical access, to reflect the scattered 

light along the same optical path through the interferometer. 

The major tradeoff between filtered and interferometric Rayleigh scattering measurements is that FRS 

provides a 2D time-averaged measurement while IRS provides a 0D (pointwise) instantaneous 

measurement at one or a few points in a flow. Therefore the user must decide if spatial or temporal 

resolution is more important when choosing between these approaches.  

6.2.4. Spontaneous Raman scattering (SRS) 

SRS measures the Raman spectrum, which is sensitive to individual rotational and vibrational 

transitions. This spectra is created from the scattering from molecules occupying different energy states. 

Stokes Raman, where a quanta of energy is absorbed by the molecule, can occur for a molecule starting in 

any state, while anti-Stokes Raman is only available for molecules in excited states (above the ground 

state). When compared to Rayleigh scattering, the signal intensity of Raman scattering is lower (typically 

three orders of magnitude). Rayleigh scatter is caused by an incoming photon perturbing the electron 

cloud.    The perturbation is unstable and the energy is scattered at the same wavelength (neglecting 

Doppler shifts).  Raman involves nearly the same process except that the molecule (very occasionally, 

with low probability) undergoes a change in rotational or vibrational state during the scattering process 

with the balance of energy imparted to the scattered photon.  This is why Raman is much weaker than 

  

Figure 6.5.  Fabry-Perot Interferometer (left) and IRS image of a supersonic jet (right). From Seasholtz et 

al
206

 and reprinted with permission of the author.  
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Rayleigh.  For gases in thermal equilibrium, the Stokes spectra is stronger than the anti-Stokes, since 

more molecules occupy the ground state.  From the population distribution of the energy states, it is 

possible to measure rotational and vibrational temperature, from its fundamental definition, as well as 

species concentration.  

Experimentally, SRS is typically performed using pulsed Nd:YAG lasers equipped with pulse-

stretching optics to have as much energy as possible while not causing laser induced breakdown. These 

lasers are typically focused to a point in the flow which is then imaged through a spectrometer onto a 

linear array or a camera, such that the spectra can be resolved. One common issue with SRS 

measurements is the intensity of the Rayleigh spectra overwhelming the Raman spectra. To overcome this 

issue, notch filters, tunable filters, etc. are used to remove the Rayleigh spectra.  

Figure 6.6 shows an example Raman spectrum obtained from a high-pressure CH4 flame.
208

 This 

spectra shows many different spectral features which are directly related to the rotational and vibrational 

temperatures as well as the different concentrations of the products in the flame. Models of such spectra 

exists allowing for data fitting analysis where the temperatures and concentrations can be determined 

directly from measured spectra. Rotational temperature can be determined by analyzing the rotational 

bands of the Raman spectrum as the strength, position, and shape of the lines/envelope vary with 

rotational temperature. Vibrational temperature can be calculated based on the relative heights of the 

vibrational Raman bands. The Stokes and anti-Stokes N2 band is commonly used since it is a common 

constituent in supersonic, hypersonic, and combusting flows, a well understood molecule, and is 

spectrally isolated from other common bands. Another method of measuring the vibrational temperature 

is to spectrally fit the vibrational bands of a molecule as shown below. 

 

Figure 6.6.  Five-hundred-pulse-average Raman spectrum in a high-pressure CH4 air flame. The 

excitation laser wavelength was 532 nm. A 532 nm filter blocks Mie, Rayleigh and spurious laser 

scattering as well as some of the low-rotational-quantum-number rotational Raman lines. A subframe 

burst gating (SBG) technique was also used to subtract background emission from this spectrum. (From 

Kojima and Fischer
208

)  Reprinted with permission of the authors. 
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6.3. Example of Laser Scattering Experiments 

DGV, FRS, IRS, and SRS are measurement techniques capable of measuring velocity, temperature, 

pressure, and species concentration in hypersonic flow fields. Some of these techniques have yet to be 

applied directly in hypersonic facilities, but no physical phenomena limits their capability. In fact, the use 

of small particles, or no particles for Rayleigh/Raman, is a boon for hypersonic test conditions as large 

tracers are restricted in their ability to follow the flow, especially through shocks and other large velocity 

gradients as described in the PIV section of this manuscript. An issue that might preclude the use of 

Rayleigh/Raman in a particular facility is that the signal is a direct function of density, and hypersonic 

facilities typically operate at low densities. This can be overcome with increases to laser power, camera 

sensitivity, or observation time, but low signal is a drawback nonetheless. Examples are provided to 

illustrate the capability of the techniques.  

Thurow et al.
195

 used a pulse-burst laser to perform time-resolved (250 kHz) DGV measurements of a 

rectangular Mach 2.0 jet. The system was capable of producing 28 images/burst at 250 kHz with 9 

mJ/pulse of energy. Measurements were conducted approximately 6-12 jet heights downstream of the 

nozzle exit, and one velocity component was measured. Figure 6.7 (top) shows the velocity obtained with 

full field of view, and Fig. 6.7 (bottom) shows a zoomed-in time-sequence of the area indicated via the 

white rectangle. These images show the technique’s ability to temporally resolve small flow features 

contained in the jet’s mixing layer. 
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Figure 6.7. Velocity obtained using pulse-burst DGV: (top) shows full field of view with rectangle 

marking large-scale structure within mixing layer and (bottom) shows sequence of 22 velocity images of 

the highlighted structure. Data was acquired at 250 kHz. (From Thurow et al.
195

). Reprinted with 

permission of the authors. 
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An example of SRS being applied to a hypersonic flow is given by Sharma et al.
209

 where they 

measured the rotational and vibrational temperature of N2 to study the evolution of the vibrational 

relaxation. To induce vibrational-rotational non-equilibrium, a two-dimensional converging-diverging 

nozzle was inserted into the Electric Arc Shock Tube (EAST) facility at NASA Ames Research Center. 

The addition of this nozzle caused a reflected shock generating a reservoir of high-pressure, high-

temperature N2 gas. The result of the gas undergoing rapid expansion through the nozzle is vibrational-

rotational non-equilibrium. Figure 6.9 (left) shows an example of the Raman spectrum fit for rotational 

and vibrational temperature and Fig. 6.9 (right) shows the normalized temperature profile taken along the 

centerline of the nozzle.  

 

 

Figure 6.8.  Temperature (left), pressure (center) and velocity (right) measured in a Mach 2 supersonic 

jet flow using Rayleigh scattering observed through a gas vapor cell using a frequency-scanned, 

injection-seeded Nd:YAG laser. (From Forkey et al
205

). Reprinted with permission of the authors. 

  An example of FRS is shown in Fig. 6.8 for a Mach 2 free jet flow.
205

 Contour maps of temperature 

(left), pressure (center), and velocity (right) are provided. These measurements were compared to 

RELIEF data which provided uncertainty estimates of ±2-3% for velocity, ±2% for temperature, ±4-5% 

for pressure for these time-averaged measurements. 
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6.4. Conclusions for Laser Scattering Techniques 

Laser Scattering techniques, including methods based off Mie, Rayleigh and Raman scattering, offer a 

variety of different measurement capabilities.  All use a single incident laser beam, typically at 532 nm. 

The methods differ in the way the laser light is focused into the flow and the way that the signal is 

collected and analyzed.  Mie scattering based techniques such as DGV generally have much larger signal 

intensities than Rayleigh and Raman and thus can be done using lower energy density lasers and/or over a 

larger field of view in a flowfield.  However, DGV is limited to measuring only velocity while Rayleigh 

scattering can measure density, temperature, and pressure as well as velocity.   The signal from Raman 

spectroscopy is much weaker than Rayleigh scattering but the method is used nonetheless because it can 

detect multiple species simultaneously with the same measurement system.  Raman can also probe 

rotational and vibrational temperatures while Rayleigh only measures the translational temperature.  Thus, 

these three measurement technologies, though having common physical origins, provide complementary 

types of data. 

  

 

Figure 6.9.  Example Raman spectrum of N2, acquired in a Electric Arc Shock Tube, fitted for 

rotational and vibrational temperature (left) and Normalized temperature profile taken along centerline 

of nozzle. From Sharma et al.
209

 Reprinted with permission of the authors. 
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7. Coherent anti-Stokes Raman scattering 

7.1. Introduction to CARS 

Coherent anti-Stokes Raman Scattering (CARS) is a nonlinear 

spectroscopic technique that targets Raman-active molecular transitions 

between vibrational or rotational energy states using the frequency 

difference between two laser pulses, establishing a “coherence” of 

molecules prepared by the laser into certain states. A third laser pulse is 

used to probe the Raman coherence, and the result is a laser-like signal 

that contains information about the thermodynamic state of the sample, 

as well as molecular species concentration information. This technique is 

orientated similar to a “pitch and catch” laser measurement. Here, three 

laser beams are sent into a sample or flowfield and focused to a point, as 

shown in Fig. 7.1 from the right. The generated coherent signal exits on 

the other side of the flowfield as a fourth laser beam, and is then directed into a paired spectrometer and 

camera for data acquisition.  Signal is generated just at the point where all beams overlap and focus, 

providing a spatially-resolved measurement, an advantage in environments that exhibit spatial 

nonuniformities. 

CARS is applicable to a wide variety of supersonic, hypersonic, and combustion flows, and is not 

limited to a range of flow velocities. The main constraint is requiring a Raman-active molecule to sample. 

However, a wide variety of molecules are Raman active, including N2, O2, H2, CH4, C2H4, CO, and CO2, 

and at least one of these molecules is generally present in hypersonic applications (e.g. air, combustion 

products).
210,211,212

 For most applications, CARS can be employed for the measurement of temperature, 

and, in some cases pressure and species concentration, using a single laser pulse to make an instantaneous 

(10 ns) measurement. This capability allows for accurate measurements in a temporally varying 

environment. Additionally, because CARS is a nonlinear technique—generated using more than a single 

electric field or laser pulse—and uses a coherently driven transition, it can typically be implemented at 

lower number densities (lower static pressure) and better temporal resolution when compared with gas-

phase linear spectroscopy techniques like spontaneous Raman scattering. However, CARS is typically 

implemented for single-point measurements, as shown in Fig. 7.1. 

7.2. Basic theory of CARS 

Originally observed in the condensed phase,
213,214

 CARS was applied to gas-phase measurements 

initially for combustion studies.
215,216

 Early CARS technique development and theory were reviewed and 

 

Figure 7.1.  Simplified 

CARS experimental setup 

shown implemented in a 

tunnel. 
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summarized by Eckbreth.
217,210

 More recent development and implementation was reviewed by Roy with 

a focus on reacting flows.
211 

Early implementations of CARS used pulsed nanosecond (ns) laser sources to excite vibrational and 

rotational Raman transitions to meet the requirement of high electric field strength for gas-phase 

measurements,
210

 and CARS measurements employing ns lasers—referred to here as ns CARS—remains 

a useful and accurate tool for reacting and high-speed flows. When targeting multiple Raman transitions, 

both temperature and species concentration can be determined by comparing to spectral simulations,
218

 

eliminating the need for time-intensive calibration or quantification of absolute irradiance. Although this 

technique relies on the precise overlap of multiple laser beams in space and time, ns CARS has been used 

for measurements in a number of realistic combustors and other harsh measurement conditions.
212,219-226

 

Despite its many successes, ns CARS measurements are complicated by nonresonant background 

signal
227

 and collisional broadening at high pressures,
228

 both of which require detailed knowledge of total 

number density and all species present in the targeted environment. With the advent and 

commercialization of regenerative pulse amplification, picosecond (ps)
229-232

 and femtosecond (fs)
233-235

  

laser sources were employed for CARS measurements, offering higher acquisition rates (1-10 kHz instead 

of 10-30 Hz), more reliability, and lower shot-to-shot variation. A particular advantage of ps CARS that 

has applications to wind tunnel measurements is the convenient ability to deliver the three laser pulses to 

the sample (or tunnel) through fibers.
236

 Hybrid femtosecond/picosecond (fs/ps) CARS is an approach 

that combines the broadband excitation of a femtosecond laser with narrowband picosecond 

detection,
237,238

 and will be discussed in detail. Similar to ns CARS, fs/ps CARS has been employed for 

flame thermometry,
239-246

 species identification,
247,248

 and concentration measurements.
246,249,243,250

 The ps 

probe can be delayed in time to measure the decay rate of individual rotational transitions,
251-253

 and this 

feature coupled with the near-instantaneous fs excitation enables “collision-free” thermometry
254

 or can 

be employed to measure gas pressure.
255

 Although it presents additional experimental complexities, fs/ps 

CARS has recently been applied to challenging measurement environments including propellant 

flames,
256

 detonations,
257

 high-pressure combustion,
258

 nonequilibrium plasmas,
259

  and plasma assisted 

combustion.
250,260

 

Although in essence all variations of CARS rely on the same theory, some fundamental differences do 

exist, such as between ns and fs/ps CARS. These differences can be understood through the frequency 

and timing schematics shown in Fig. 7.2. In either case, the frequency difference between two laser 

pulses, denoted pump and Stokes, is tuned to match the Raman transition of interest. The selected 

transition can correspond to either a change in vibrational states (v), as shown, or a change in rotational 

states (J), which in many cases requires only a small difference in frequency between the two pulses. For 
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example, the fundamental vibrational transition of N2 is at 2330 cm
-1

, while its pure-rotational transitions 

lie in the range of 5-300 cm
-1

. Because the energy of the transition is matched by the frequency difference 

of two laser pulses, visible laser wavelengths can be chosen for pump and Stokes, while maintaining the 

benefit of coherently driving the molecular transition. For instance, 532 nm and 608 nm can be used to 

excite the vibrational transition of N2. 

For the case of ns CARS, shown in Fig. 7.2a, both pump and Stokes have a pulse width on the order of 

10 ns. The typical linewidth for an unseeded, 10 ns pulse at 532 nm is <1 cm
-1

, represented by a thin 

arrow for the relatively narrowband pulse pump. On the other hand, Stokes is generated using a broadband 

dye laser, and is depicted by a wide arrow. This allows for the excitation of multiple vibrational 

transitions originating from different rotational levels, as shown in Fig. 7.2a. Although this figure only 

shows the excitation of vibrational transitions from v = 1 to v = 0, the broadband Stokes pulse also enables 

the excitation of higher energy vibrational transitions (i.e. v = 2 to v = 1, etc.), and, if sufficient bandwidth 

exists, transitions from multiple species (i.e. N2 and CO). Next, a second narrowband pulse, probe, is used 

to probe the excited Raman coherence. If this pulse is frequency shifted to another color using a 

narrowband dye laser, as shown in Fig. 7.2a, pump and probe can effectively swap places to access even 

more species (i.e. O2 and CO2) without any change in alignment. This is referred to as dual-pump 

CARS.
261,262

 Example dual-pump CARS spectra are shown later in Fig. 7.3a and b.  

 

Figure 7.2.  Frequency (left) and timing (right) diagrams shown for (a) ns CARS and (b) fs/ps CARS. 

(a) ns CARS with broadband Stokes

(b) fs/ps CARS
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Figure 7.2b shows the frequency diagram for fs/ps CARS, and at first glance it looks very similar to its 

ns CARS counterpart. For fs/ps CARS, however, both pump and Stokes have a pulse width 100 fs.  In 

addition to the ability to probe molecules on a shorter time scale, these pulses are capable of 

simultaneously exciting many molecular transitions due to their inherent broadband nature (150 cm
-1

), as 

dictated by the Heisenberg uncertainty principle. To maintain sufficient spectral resolution for traditional 

frequency-domain detection, a longer (and spectrally narrower) picosecond pulse is used for probe. 

Typical pulse widths of probe range from 1-100 ps with bandwidths <10 cm
-1

. One variation, dual-pump 

fs/ps CARS, uses a fourth laser pulse to allow for the excitation of vibrational and rotational transitions,
249

 

and sample spectra using this variation are shown later in Fig. 7.3c and d. 

One of the fundamental benefits of employing fs/ps CARS can be observed by considering the CARS 

process in the time domain as shown on the right hand side of Fib. 7.2b. The two fs pulses, pump and 

Stokes, are timed together to excite the Raman coherence “instantaneously”. The picosecond probe pulse 

is then typically delayed relative to the initial excitation (probe) to avoid temporal overlap with the first 

two pulses. Such an arrangement avoids the collection of nonresonant background,
230,229,263

 a four wave 

mixing signal generated from the laser interacting with all species present in the sample, not just the 

species resonant with pumpStokes. Additionally, if a relatively short (i.e. <10 ps) pulse is used as probe 

and the probe delay is minimized, the entire CARS measurement is completed before a significant 

number of molecular collisions have occurred. This increases the accuracy of the CARS measurement 

when the exact collisional environment is not precisely known. If the probe pulse is delayed further 

relative to the initial excitation, the resulting CARS signal can be used to determine pressure if 

temperature and species have already been determined. Varying this probe delay from early to late has 

been used to measure temperature and pressure using CARS.
264,255

 In comparison, all three pulses for ns 

CARS occur simultaneously as shown on the right hand side of Fig. 7.2a. 

The schematics shown in Fig. 7.2b do not encompass all variations of ns and fs/ps CARS but do 

provide an accurate introduction into CARS theory. A third implementation of CARS that is not 

discussed in detail here uses only a ps laser, and is referred to as ps CARS. It generally looks similar to ns 

CARS in that it requires the use of a broadband OPO or dye laser to generate a single or multiple 

broadband pulses, but the Raman excitation is within a time domain that still offers some of the benefits 

of delaying the ps probe.  An advantage of ps CARS is that the laser beams are lower powered than ns 

CARS and thus can be delivered through optical fibers to the measurement location.
236

 

The interaction of the three laser pulses shown in Fig. 7.2 with the resonant molecules of the sample 

induces a third-order polarization field, resulting in the CARS signal that can be collected and analyzed. 
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This coherent, laser-like signal is dependent upon the temperature and pressure of the sample. The CARS 

signal intensity, ICARS, can be represented in the frequency-domain by  

where E1, E2, E3 represent the electric fields of the pump, Stokes, and probe laser pulses, respectively. The 

CARS portion of the third-order nonlinear susceptibility, 𝜒𝐶𝐴𝑅𝑆
(3)

, is a function of the thermodynamic 

information about the sample being probed, including temperature, species concentration, and number 

density or pressure. Thus, the intensity and relative shape of the spectra obtained experimentally can be 

compared to theoretically calculated spectra to determine this thermodynamic information.
218,265

 

Regarding the temperature measurement, CARS can directly probe Boltzmann rotational and vibrational 

distributions. In cases of nonequilibrium, the Boltzmann distribution expands to include multiple 

temperatures describing different energy modes (i.e. Tvib, Trot, etc.) which CARS can measure 

directly
266,259

 Additionally, if the nonequilibrium is severe enough to preclude the use of Boltzmann 

statistics, CARS can be used to quantify energy level populations instead of temperatures.
267-269,259

 This is 

an important distinction—the CARS process is a function of the populations of different energy levels, 

not just the translational temperature of the gas.  

Although three laser pulses are required for CARS signal generation, they usually originate from a 

single laser which simplifies timing. For ns CARS, the second harmonic of a pulsed Nd:YAG laser at 532 

nm is employed. This output is typically split into three separate beams. One beam is unaltered and used 

as pump. The second beam is used to pump a broadband dye laser to generate the broad Stokes. The third 

beam can be used directly as probe or is used to pump a narrowband dye laser to access more species, as 

shown in Fig. 7.2a. Alternatively, the third harmonic of the Nd:YAG can also be used to pump each dye 

laser, depending on the molecules being sampled. The three beams are focused and crossed, generating 

the laser-like CARS signal beam as shown in Fig. 7.1.  A spectrometer and CCD camera are used to 

spectrally disperse and record the CARS signal. In most cases where the expected number density is low, 

an electron-multiplied CCD (EMCCD) is recommended to achieve single-laser-shot results. The high-

energy requirement of this technique typically limits it to the use of a 10-30 Hz flashlamp pumped 

Nd:YAG laser. By substituting the dye laser(s) with solid-state optical parametric oscillators (OPO), 

higher measurement rates can be achieved for short bursts of time through the use of a burst-mode laser, 

as was done using a ps burst mode laser operating at 100 kHz.
270

 

The equipment and experimental setup required for hybrid fs/ps CARS differs from that used for ns 

CARS. A regeneratively-amplified Ti:sapphire laser is typically used as the fs laser source. Its output is 

split to form pump and Stokes, and the pump pulse can be frequency converted to the desired wavelength 

𝐼𝐶𝐴𝑅𝑆(𝜔4) ∝ |𝑃𝑟𝑒𝑠
(3)

(𝜔4)|
2
∝ |𝜒𝐶𝐴𝑅𝑆

(3)
𝐸1(𝜔𝑝𝑢𝑚𝑝)𝐸2(𝜔𝑆𝑡𝑜𝑘𝑒𝑠)𝐸3(𝜔𝑝𝑟𝑜𝑏𝑒)|

2
 (7.1) 
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to access vibrational transitions using the frequency-doubled output of an optical parametric amplifier 

(OPA). An OPA is unnecessary if rotational transitions are studied instead (commonly called “pure 

rotational CARS”), simplifying the experimental setup. The ps pulse used as probe can either be generated 

through pulse-shaping techniques from the fs laser
263,242

 or, when higher probe energy is desired, from a 

separate ps laser synchronized to the fs system.
245

 This can be accomplished using a regeneratively-

amplified ps laser, limiting the repetition rate of the measurement to ~10 Hz, or using a flashlamp or 

diode-pumped burst-mode laser, where the measurement rate for a single burst is limited by the fs laser 

(1-5 kHz). Compared to ns CARS, the setup and alignment of fs/ps CARS is more complex, owing to the 

challenge of overlapping three pulses with 100 fs precision (matching beam paths within 30 m) instead 

of merely 10 ns precision (matching beam paths within 3 m). Because of this, motorized translation stages 

are often employed for the precise and repeatable alignment of different beam paths.  

The spatial resolution of CARS is dictated by the spatial extent over which the three laser beams are 

overlapped, phase matching is satisfied, and the electric field strength is sufficient. Although not 

discussed in detail here, phase matching meets the conservation of momentum requirement, and can be 

accomplished through a variety of beam crossing configurations.
271

 Essentially, the three beams need to 

cross in space and be focused to a small enough cross section to generate a large electric field. As the 

beams focus and cross, they form an ellipsoidal probe volume. As long as the beams all cross at their 

smallest cross section, the minor diameter of the ellipsoid will be on the order of 25-75 m as predicted 

by Rayleigh focusing. Additionally, if a shorter focal length combining lens is chosen or if the beam 

crossing angle is increased, the length of the probe volume will decrease. Typically, the length of the 

CARS probe volume is estimated to be 1-2 mm, although shorter probe volumes have been reported (650 

m).
259

 Although traditionally limited to single-point measurements, fs/ps CARS arrangements have been 

used to measure one- and two- dimensional fields. Their spatial resolutions will be discussed later.  

The accuracy and precision of ns and fs/ps CARS is dictated by the measurement environment (i.e. 

temperature, number density) as well as the CARS system employed (i.e. probe energy, size of probe 

volume, etc.). The measurement error and precision reported for ns CARS thermometry range from 2-5% 

and 3-5% respectively.
272

 The error reported for fs/ps CARS thermometry is moderately lower, 1-5%, 

with a notable improvement in precision of 1-3%.
243,239,241

 
 

One implementation of ns CARS is dual-pump CARS employing different wavelengths for pump and 

probe. Because these two pulses are overlapped in time, they can switch roles: accessing molecules with 

transition frequencies equal to pumpStokes and probeStokes. This configuration was initially applied to 

excite vibrational transitions of N2 and O2 or N2 and propane,
261

 and was expanded to include a greater 

number combustion relevant species by employing dye mixtures that resulted in a larger bandwidth 
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coverage by Stokes.
226,273,274

 Sample spectra obtained using dual-pump ns CARS by Cutler et al.
275

  is 

shown in Fig. 7.3a and b. The bandwidth of Stokes was 600 cm
-1

, enabling the excitation of N2, O2, H2, 

CO, CO2, and C2H4—all of the major species of ethylene-air combustion besides water. The species 

concentration for each of these molecules can be obtained by comparing to a spectral model, allowing for 

the concentration of water vapor to be inferred from the nonresonant signal. The single-laser-shot 

spectrum shown in Fig. 7.3a was measured within the cavity of a scramjet combustor facility located at 

the University of Virginia. For this work, the electrically heated air was discharged through a Mach 2 

nozzle, and fuel was injected at a global equivalence ratio of 0.40. The temperature was determined by 

comparing the measured spectrum with calculated spectra at various temperatures. The best fit theoretical 

spectrum corresponded to a temperature of 1453 K, and is shown on the plot as a red curve. A shot-

averaged spectrum is shown in Fig. 7.3b, and the spectral features of various molecules are labeled on the 

plot. Although the Raman frequencies for O2 and N2 are separated by almost 800 cm
-1

, the CARS signal 

generated from each of these species appear within 150 cm
-1

 of each other. This is due to the use of two 

different “pump” pulses (swapping pump and probe), conveniently enabling collection of signals from 

both species using a single spectrometer and camera with sufficient spectral resolution. Additionally, 

using a higher resolution spectrograph also allows for the partial resolution of vibrational transitions 

originating from different rotational levels (i.e. transition from (v=1, J=10) to (v=0, J=10); (v=1, J=11) to 

(v=0, J=11); etc.), as shown in other publications using the same dual-pump ns CARS instrument.
262,266

 

This enables observation of the population distribution among rotational and vibrational energy levels, 

allowing for the measurement of non-equilibrium temperatures. 

Sample fs/ps CARS spectra are shown in Fig. 7.3c and d for rotational and vibrational transitions, 

respectively.
276

 These spectra were generated using dual-pump vibrational/rotational fs/ps CARS, a 

technique developed by Dedic et al. to excite both rotational and vibrational transitions of N2 

simultaneously, and was first used to measure temperatures ranging from ambient conditions to flame 

conditions and measure O2, N2, CH4, and H2 simultaneously.
249

 This measurement uses two fs pump 

pulses at different wavelengths and shares a single Stokes and probe, and the signal generated at different 

wavelength ranges can be collected using a single spectrometer and two cameras.
259

 The vibrational 

spectra shown in Fig. 7.3d demonstrate the lower spectral resolution of fs/ps CARS due to the use of a ps 

probe pulse instead of a narrowband ns pulse. In this case, the resolution is no longer limited by the 

resolving power of the spectrometer, but instead by the ps probe pulse. Because of this, the fine structure 

from spectral lines originating from different rotational states are difficult to use to measure rotational 

temperature independent from vibrational temperature with reasonable accuracy. Instead, dual-pump 

vibrational/rotational CARS can be employed to measure the rotational energy distribution separately to 
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characterize nonequilibrium enviornments.
259

 The spectra shown in Fig. 7.3c and d were measured within 

an unsteady atmospheric pressure dielectric barrier discharge in a He-N2 environment. Both spectra were 

collected simultaneously within a single-laser-shot, and the vibrational and rotational temperatures were 

determined to be 3460 K and 390 K, respectively, by comparing the experimental measurements (green 

symbols) with theoretically calculated spectra (black curve). Because rotational temperature is determined 

directly from rotational transitions, the measurement of nonequilibrium is likely more sensitive using this 

fs/ps CARS technique. Additionally, it is often difficult to resolve the fine rotational structure from 

vibrational transitions while still capturing the full range of vibrational bands for an environment with 

high vibrational temperatures or extreme non-Boltzmann energy distributions.  

To compare relative signal levels between the single-shot ns CARS measurements shown in Fig. 7.3a 

(blue curve) and the single-shot fs/ps CARS measurements shown in Fig. 7.3c and d (green symbols), the 

absolute number density of N2 was considered. Based on experimental details, the N2 number density was 

estimated to be approximately 5.9x10
18

 cm
-3

 for the scramjet combustor studied using ns CARS and 

2.5x10
18

 cm
-3

 for the N2-He plasma characterized using fs/ps CARS. Although this comparison does not 

account for differences in probe volume or specific energy level populations, it provides a rough 

comparison of how much signal could be expected from each technique when similar number densities 

(within a factor of two) are probed. Although the number density is likely slightly higher for the ns CARS 

measurements, both techniques appear to have a similar level of noise (comparing Fig. 7.3a and 7.3d) 

when considering the difference in y-axis scales. One limitation on ns CARS signal generation is due to 

Stark broadening and stimulated Raman pumping.
277

 Laser pulse energies used for ns CARS must be 

limited to avoid such effects, limiting the intensity of signal generation; whereas the threshold for these 

effects occurs at a much higher pulse energy for fs/ps CARS due to the short pulse widths used, allowing 

for higher signal generation for the same gas environment.
278
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7.3. Examples of CARS Measurements  

Although the application of the CARS technique comes with additional experimental complexity when 

compared with other diagnostics mentioned previously, it has been successfully used to measure 

temperature, species, and nonequilibrium of several supersonic and hypersonic flows. Two-line ns CARS 

was used to determine temperature and pressure simultaneously for a Mach 10 hypersonic flow.
279

 

Measurements were made in the R5Ch facility of ONERA using a Mach 10 nozzle in the freestream as 

well as near a ramp. The CARS system was tuned to two vibrational transitions in the ground vibrational 

band originating from different rotational levels, and their relative intensities were used to measure a 

rotational temperature of 55 K in the freestream. The total number density was also determined by 

comparing signal intensity to the intensity generated within a calibration cell. A broadband ns CARS 

system was implemented by Smith et al. to study static temperature within a supersonic combustion 

flowfield of a combustion-heated, high-enthalpy Mach 2 tunnel.
280

 Recently, Cutler et al. has applied the 

 

Figure 7.3.  Sample ns CARS (a) single-shot and (b) shot-averaged spectra measured within a scramjet 

combustion cavity.
275

  Sample single-shot (c) rotational and (d) vibrational hybrid fs/ps CARS spectra 

measured within a He-N2 dielectric barrier discharge. Measured spectra shown as symbols and best-fit 

simulations as solid black lines.
276

 Modified with permission of the author. 

(a) (b) 

(c) (d) 
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dual-pump ns CARS system discussed with Fig. 7.3 to measure temperature and combustion-relevant 

species within the freestream and combustion cavity of a Mach 2 combustion tunnel.
212,275,281 

Several studies have used CARS to characterize the degree of nonequilibrium for 

supersonic/hypersonic freestream flow. Vibrational/rotational nonequilibrium was measured using 

broadband ns CARS in a pulsed high-enthalpy shock tunnel by Fraval et al.
282

 Both N2 and air were 

studied for different nozzle throat diameters and lengths, with differences between vibrational and 

rotational temperatures on the order of 1000 K. Montello et al. used ps CARS to measure the N2 

vibrational distribution function in the plenum of a laboratory-scale Mach 5 nonequilibrium wind 

tunnel.
268

 The tunnel used a series of pulsed and dc discharges to load energy into excited vibrational and 

electronic levels, and effective collisional partners were injected downstream of the plasma discharge to 

tailor the distribution of energy within the flow. Measurements confirmed vibrational temperatures on the 

order of 2000 K for a total plenum pressure of 300 Torr. Smith and coworkers used broadband CARS at 

Mach 10 and 14 within the AEDC Hypervelocity Wind Tunnel No. 9 facility to determine if 

inconsistencies between CFD and experimental tunnel measurements could be due to thermal 

nonequilibrium.
283

 Although results were not conclusive, the implementation of CARS in such a 

challenging, large scale facility shows promise for future measurements. 

In particular, results showing nonequilibrium energy distributions in the freestream of the electrically-

heated, clean-air combustion tunnel at the University of Virginia (UVa) are shown in Fig. 7.4. This work 

by Cutler and coworkers
266

 used the same dual-pump CARS setup discussed previously, but only 

collecting N2 and O2 CARS spectra within the freestream heated air. The goal was to study any 

nonequilibrium due to the sudden gas expansion experienced in the facility’s nozzle, as well as the spatial 

distribution of the facility inflow rotational and vibrational temperatures.  
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As discussed in the original paper, the vibrational relaxation time for pure N2 at these conditions is 

about 28 ms, but the flow velocities studied result in a residence time for the length of the scramjet of 

around 1 ms. Thus, vibrationally frozen flow from the exit of the tunnel nozzle would not have significant 

time to relax without the addition of an effective colliding species, such as water vapor, typically present 

 

Figure 7.4.  Rotational temperature and vibrational (N2 and O2) temperature maps reconstructed from 

single-point ns CARS measurements on the grid shown. Units are Kelvins. Measurements were made 

in free stream air at two locations downstream from the throat of a Mach 2 nozzle.
266

 Reproduced with 

permission of the author. 
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in vitiated air scramjet facilities but not normally present in the electrically-heated UVa tunnel. The 

results in Fig. 7.4 show the rotational and vibrational temperatures measured at the exit plane of the 

tunnel nozzle. Temperatures were determined separately for the measured N2 and O2 energy distributions. 

Single-point measurements were made at each grid point by translating the pitch-and-catch CARS optics. 

The reconstructed temperature maps show rotational temperatures around 650 K and N2 vibrational 

temperatures above 1200 K, confirming the presence of frozen vibrational states near the electric heater 

stagnation temperature. The vibrational temperature of oxygen was also measured as approximately 100 

K lower the nitrogen vibrational temperature. The addition of a small amount of water vapor (3.7%) 

resulted in the thermal equilibration of the N2 and O2 vibrational levels.  

The measurements discussed thus far demonstrate the applicability and utility of CARS to supersonic 

and hypersonic flows. The measurements were limited to the application of ns CARS, with one 

demonstration of ps CARS to a laboratory-scale tunnel. Owing to the relatively recent development of 

fs/ps CARS, high-speed wind tunnel results are not yet available for inclusion here. However, there have 

been several demonstrations of the utility of fs/ps CARS within harsh measurement conditions, including 

metalized propellant flames
256

 and high-pressure flames.
258

 One study by Dedic and coworkers 

implemented a fs/ps CARS system to measure vibrational temperatures at the exit of a 2 mm diameter, 

C2H4-O2-N2 detonation tube.
257

 The tube operated with gas velocities around 2200 m/s with Chapman-

Jouguet (C-J) predicted detonation Mach numbers around 5.5-7. Although the measured detonation 

velocity determined by tracking the flame front matched C-J calculations well, the nitrogen vibrational 

temperatures at the exit of the tube after the passage of the wave front measured using fs/ps CARS were 

significantly lower than the C-J equilibrium temperature predictions. 

The dual-pump vibrational/rotational fs/ps CARS technique described previously with Fig. 7.3 was 

used to measure nonequilibrium energy distributions of a dielectric barrier discharge,
259

 and sample 

results are shown in Fig. 7.5.
276

 The plasma was generated at atmospheric pressure within a flow of He 

and N2. A sample image of the plasma emission is included in Fig. 7.5a, and fs/ps CARS measurements 

were made on the grid points shown. For this study, an unsteady plasma was generated by increasing the 

concentration of N2 to 13%. The average vibrational and rotational temperatures determined from fitting 

single-shot spectra are included in Fig. 7.5b, and the standard deviations are represented as bars. The gas 

was flowing from above and sweeping excited species away from the center of the plasma after impinging 

on the bottom plate electrode, resulting in the observed decay in vibrational temperature moving away 

from the center of the plasma. The secondary peaks in vibrational temperature were argued to be due to 

secondary vibrational excitation due to the relaxation of excited electronic states. The large temperature 

variations observed at the center of the plasma were due to shot-to-shot variations in the plasma filament 
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structures. Although the measured nonequilibrium from this example was generated using a plasma 

instead of high-speed flow driven effects, it demonstrates the feasibility of applying fs/ps CARS to 

quantify nonequilibrium environments. 

 

Despite additional challenges associated with moving from ns CARS to fs/ps CARS, it does offer 

several benefits including an increase in measurement rate from 10-30 Hz to 1-5 kHz, avoiding the use of 

dye lasers, suppression of nonresonant signal, and collision-free thermometry. Additionally, as discussed 

previously, fs/ps CARS offers the ability to measure pressure with much higher accuracy than fitting the 

widths of spectral lines in the frequency domain. Gas-phase pressure measurements in a static cell were 

reported by Kearney et al. with 2% error and 1.3% precision possible for certain measurement 

conditions.
255

 Another notable advantage, however, is the possibility of the extending the CARS 

measurement from a single point to multiple dimensions. Decreasing the pulse duration from 10 ns to 100 

fs allows for CARS signal generation with significantly lower total pulse energies, enabling the successful 

implementation of CARS imaging along a line
245,246,248,250,284

 and across two-dimensional fields.
285,286

 One-

dimensional temperature, species, and possibly pressure imaging with fs/ps CARS is an excellent 

candidate for studying boundary layer development or gradients near corners and other non-smooth 

features of tunnels or models.  

Example 1D-CARS results from within a flame by Bohlin et al. are shown in Fig. 7.6.
246

 The fs/ps 

CARS signal was generated using a simplified two-beam configuration. The results show single-shot 

(black curve) and shot-averaged (red curve) temperature profiles measured at three locations within a 

side-wall-quenching burner. The extent of the measurement line was 5 mm, and the effective spatial 

 

Figure 7.5.  Rotational and vibrational temperature maps reconstructed from single-point ns CARS 

measurements on the grid shown.
276

  Modified with permission of the author. 
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resolution along the measurement line was around 35 m. Using careful relay imaging and spatial 

filtering, measurements within 30 m of the side wall surface were possible. The precision of the single 

shot temperature measurement at any point along the line was reported as 2-3%. An alternative fs/ps 

CARS method was used that replaces the two pump pulses with supercontinuum generation to access a 

wide range of species.
248

 In this study, supercontinuum excitation was used to measure relative mole 

fractions of O2, CH4, H2, and CO2, and single-shot results were possible along a ~2 mm line.  

Although the fs/ps CARS studies discussed and sample results shown in Figs. 7.5 and 7.6 were 

measured in a variety of low-speed or small-scale facilities, they demonstrate the applicability of fs/ps 

CARS to hypersonic wind tunnel studies for the accurate measurement of temperature, species, pressure, 

and vibrational/rotational nonequilibrium, and extend the previous single-point measurement limitation of 

ns CARS to small one- and two-dimensional fields. 

7.4. Conclusions for CARS 

CARS is arguably the most complicated measurement described in this manuscript but also could be 

considered the most capable. It offers spatial and temporal precision, accuracy and shot-to-shot 

measurement precision approaching 1%, and is capable of simultaneously providing temperature, 

pressure, and major species concentration information. CARS has been applied to a variety of reacting 

and nonreacting flows, including a range of spatial scales and harsh measurement conditions. Because the 

CARS signal is coherent, all the generated signal propagates like a laser beam in the forward direction, 

enabling high collection efficiencies in the convenient “pitch-and-catch” configuration. The extension of 

the CARS technique from traditional ns lasers to burst-mode ps laser systems and regeneratively 

amplified fs laser systems has allowed for an increase in measurement rate from 10 Hz to 1-100 kHz, 

 

Figure 7.6.  1D-temperature profiles of a wall-quenched flame measured using fs/ps CARS.
246

 Single-

shot and shot-averaged temperature fits are shown as black and red lines, respectively. Reproduced with 

permission of the author.  
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greatly improving measurement statistics by enabling 100-10,000x more measurements for the same 

amount of tunnel run time. Two variations of the CARS technique were discussed in detail: ns CARS and 

fs/ps CARS. Due to its relative maturity, ns CARS has already been used successfully in supersonic and 

hypersonic wind tunnels. Although it is a relatively new measurement, fs/ps CARS is maturing quickly 

and extends the single-shot CARS measurement from a single-point to one- and two-dimensional 

measurements.  Both ns and fs/ps CARS methods can measure rotational and vibrational nonequilibrium 

energy distributions which are critical for hypersonic freestream flows.   
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8. Particle Image Velocimetry 

8.1. Introduction to PIV 

Particle Image Velocimetry (PIV) is a technique that measures flow velocity from light scattering from 

small tracer particles seeded into the flow.
287-292

  The basic concept of PIV is to directly visualize and 

quantify the flow motions via the illumination and imaging of seeding particles that are assumed to follow 

the flow accurately. PIV then measures the physical displacement of particle ensembles during a small 

time interval from successive images of their scattered light. This differs from other particle-based 

techniques like laser Doppler velocimetry (LDV)
289,290

 and Doppler Global Velocimetry (DGV)
291,292

 in 

that these infer velocity from the wavelength Doppler shift that is produced by the particle motions. PIV 

systems have capabilities of measuring accurate instantaneous and average flow field velocities in two-

dimensional (2D) planes as well as three-dimensional (3D) volumes.
287,293,304,310

 PIV can also provide 

time-resolution using various methods as will be described in this section.
308

  PIV is preferred to LDV in 

many applications because LDV typically measures pointwise. PIV is also preferred to DGV in many 

applications because although DGV is planar it is generally time averaged, it can have higher 

uncertainties, and is generally more difficult to set up compared to PIV. A review of DGV technique and 

examples were given in Section 6 of this manuscript.  

LDV (also called laser Doppler anemometry, LDA)
289,290

 is a pointwise particle-based technique that 

has high accuracy and spatial and temporal resolution. It utilizes the direct measurement of the Doppler 

shift between incident and scattered light from moving particles. In the basic setup, LDV utilizes two 

continuous wave laser beams that intersect at the region of interest to measure a velocity component. 

Adding extra beams can yield three components of velocity at the probed point, typically a few mm long. 

It does provide time series data collection that allows frequency analysis. However, being limited to a 

single point hinders obtaining spatial information.  It also has limitations regarding implementation in 

harsh environments. 

For the last few decades the theory and practical applications of PIV techniques have been improved to 

a point where high-resolution, high-accuracy data is readily attainable in a large variety of flows (laminar, 

turbulent, microfluidic, high-speed, etc.) and in harsh environments and facilities (wind tunnels, water 

tunnels, transonic compressors and turbines, jet engines, supersonic and hypersonic facilities, etc.) 

Nonetheless, one main challenge of the technique remains, the particle seeding, which is especially 

difficult in the harsh conditions and environments encountered in high-speed flows.  The general 

requirements for a robust seeding system include delivery of a prescribed amount of particle 

concentration with uniformity (to yield enough data while not perturbing the flow), necessity to follow the 

flow velocity as accurately as possible (typically by requiring small diameter), requisite to be bright light 
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scatterers, and the need to be non-hazardous and non-contaminating.  These requirements typically have 

to be addressed in the design on a case-by-case basis.  

8.2. Basic theory of PIV 

One of the main advantages of using large particle light scattering techniques for velocimetry is that, 

having sizes similar to or larger than the light wavelength (), they are much brighter than molecules and 

tiny particles of diameters < 1/10 of . For the larger particles, light scattering intensity is predominantly 

in the Mie light scattering regime
288

 and is proportional to the square of the particle diameter, while 

scattering from molecules and tiny particles is predominantly in the Rayleigh light scattering regime and 

is much weaker than Mie scatter.
288

  The main accomplishment of PIV is that the technique can measure 

instantaneous and average flow field velocities in various dimensions and environments
287,293,302,304,308,310

 

The main disadvantages of PIV come from the fact that it uses particles for flow seeding. This fact 

encompasses the difficulties aforementioned especially in high-speed phenomena that include high-speed, 

compressibility, sharp turns, shocks, waves, etc.
293-303  

PIV can only render velocity vectors in regions 

containing particles and can obscure measurement of molecular thermodynamic properties.
288

 A 

drawback compared to other techniques like DGV is that independent velocities are not measured at each 

pixel; instead they are averaged over an ‘interrogation region’ such as a 16x16 pixel region, which limits 

the spatial resolution.   Another drawback is that the wavelength of scattering is essentially equal to the 

laser’s wavelength so that scattered light from surfaces interferes with the signal and, although techniques 

such as applying red paint have been used to optimize the measurement near surfaces, making these 

measurements remains challenging.  This is in contrast with PLIF for which the laser and fluorescent 

signal are typically at different wavelengths and thus the laser scattered light can be filtered.  Other 

significant practical disadvantages include the fact that particles can contaminate the facilities, requiring 

clean up after use, and that they require special/complex designs when applied in harsh pressure and 

temperature conditions.  Nonetheless, proper seeding system designs have typically been successful in 

providing a full velocity field with reasonable accuracy in many applications.
293-308

 

The Particle Image Velocimetry technique involves illuminating flow seeded particles with pairs of 

high-energy, short-duration laser pulses to ‘freeze motion in time’, and then capturing these instantaneous 

flow images with cameras that are synchronized with the light pulses (Fig. 8.1a).  By acquiring two 

successive images within a short time interval, the velocity of the particle field can be inferred from the 

displacements (Fig. 8.1b).   
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(a)    (b) 

 

To introduce the PIV technique, a simple example is described as shown in Fig. 8.1. A standard 

arrangement using one camera for 2D data rendering at low repetition rates is shown.  In Fig. 8.1a, a test 

model, such as an airfoil, wedge, ramp, sphere, etc. is installed in the test section and experiments are 

performed at desired flow conditions (Mach and Reynolds numbers). Illumination is provided by a 

double-pulsed Nd:YAG laser emitting two laser pulses with typical energies of 20-400 mJ (depending on 

the field of view) at a wavelength of 532 nm with a repetition rate varying from 10 Hz to tens or even 

hundreds of kHz.
287,311,308

 The laser beam is shaped into a laser sheet (thickness <1 mm) by using mirrors 

and spherical and cylindrical lenses, and is directed towards the flow through optical windows. The flow 

is then seeded with particles such as solid Al2O3 or TiO2 using solid fluidized powder bed seeders, 

submicron droplets produced from ‘smoke’ generators (e.g. using glycerin-water oil mixtures), Laskin 

nozzles atomizers (e.g. using DEHS oil), helium filled soap bubbles, or other “particles”. Particle sizes 

range from 10’s of nm to 100’s of microns.  Each type of seeding has its advantages and disadvantages as 

will be explained. Image acquisition is then typically performed by a high-resolution CCD camera with > 

1MPix and interframe (interline transfer) capability of < 1 s.  Camera imaging is performed through 

optical access windows, typically with its axis perpendicular to the laser sheet to gather particle images in 

focus and without distortion. For high-speed applications, CMOS cameras are often used, though at 

reduced resolution compared to CCD cameras. The camera and the Nd:YAG lasers are connected and 

controlled by a workstation having internal programmable timing unit (or are synchronized with delay 

generators) that sets the timing of the laser/image acquisition. PIV software (designed in-house or 

purchased from flow diagnostic companies) includes camera target calibration, image acquisition, and 

Figure 8.1  Schematic of standard PIV system components in wind tunnel test (a) and illustration of the 

basic principle for velocity calculations (b).  
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processing.  During data processing the instantaneous PIV velocity vectors are obtained by interrogation 

of successive image frames and using cross-correlation techniques on particle image ensembles, and 

involve multi-pass interrogation schemes for high-accuracy and high-resolution from window size of, for 

example, 64×64 to 16×16 pixels. An effective overlap of 50% is typically employed to yield higher 

spatial resolution. A vector is obtained at each of these smallest interrogation regions that typically should 

contain around 10 particles for good accuracy.
287

   The time delay between the two frames depends on the 

flow speed and magnification and typically varies from < 1sec to 100 s to adequately match 

displacements within the flow velocity dynamic range.  Higher velocity flows necessitate shorter inter-

frame times.  The time-averaged quantities are then obtained from an ensemble of 100-1000 frames of 

instantaneous velocity fields for each case. With the introduction of new ‘advanced’ processing 

algorithms such as those that utilize interrogation window deformation and fractional window 

displacements,
293,309,315,316,332

 accuracies of PIV, including that of turbulent intensities, has been reported 

within 1-2%.
293,294,308,332

 

In order to capture the three-dimensionality of a flow, the three velocity components over a 3D volume 

are required.  Using a two camera stereo PIV arrangement
287

 allows 3-velocity component data to be 

obtained in a single plane (sometimes called 3C-2D). Four or more cameras can be used in a tomographic 

PIV arrangement
310

 that allows 3-velocity component data be obtained in a 3D volume (sometimes called 

3C-3D).  For tomographic measurements the laser beam is simply expanded by a combination of 

cylindrical/spherical lenses to create a volumetric illumination in the test section.   In general, more 

cameras allow for thicker volume interrogation, higher seeding density, higher resolution, and higher 

accuracy.  These stereoscopic and tomographic arrangements incorporate adjustable ‘Scheimpflug’ 

adapters to ensure that the field-of-view from each angled camera is in focus.  In addition, time resolution 

can also be obtained by using state-of-the-art high-repetition-rate systems, currently available in the 

ranges of 1-20 kHz for continuous operation and up to 1 MHz using the ‘burst-mode’ lasers which 

produce a short burst of pulses followed by a delay of several seconds until the next burst.
307,308,311

   

It is noteworthy that recent advances in tomographic PIV algorithms such as those known as ‘self-

calibration’, ‘3D reconstruction’, ‘MART’, etc.
310

 have rendered the high accuracy and high resolution 3D 

velocity fields that were not possible with previous techniques including previous stereoscopic methods 

and holographic PIV methods.
287

   The 3D vector field is calculated using 3D correlation methods and a 

vector can be generated down to levels of individual particles. PIV algorithms currently include this 

particle tracking feature and the technique itself is known as particle tracking velocimetry (PTV).
287

  It is 

noteworthy that most advanced 3D ‘Lagrangian PTV’ methods such as those known as ‘Shake-the-box’
312

 

are purely particle-based, and include an iterative particle reconstruction technique in combination with 
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an advanced 4D-PTV algorithm (using the time-information for track reconstruction) that leads to the 

highest spatial resolution and positional accuracy for densely seeded flows.  

8.3. Particle Seeding Considerations 

Particle seeding methods and challenges are outlined in this section since this is a particular concern in 

high-speed flows. First, to study high-speed flows with PIV, a particle seeder has to inject a prescribed 

amount of particles into a plenum that is under a high pressure condition.  This typically requires high 

pressure seeding vessel designs, some of which are commercially available. Second, the particles must be 

able to withstand extreme and rapid changing pressure and temperature environment as they pass through 

the nozzle.  In most cases, solid particles such as Al2O3 and TiO2 have been widely used
293,306

 since they 

can withstand these extremes. However, since these particles tend to contaminate the wind tunnel 

components, other particles such as mineral oil ‘smoke’,
301,308

 ‘DEHS’ oil droplet aerosols,
293,325

 

nanostructured tracers,
313

 and CO2 particles
314

 have been used or explored for ‘cleaner’ seeding. Third, 

particles must follow the flow faithfully.  This requirement is especially challenging in hypersonic flow 

since most particles lose their flow tracking effectiveness at high-speed and under compressible flow 

phenomena such as sharp turn angles, shocks, and waves. Lastly, the compressible flow changes in 

density can cause severe optical distortions due to the index of refraction changes and other factors.
 

287,288,293,315,316 
   

An illustrative example of such distortions is shown in Fig. 8.2 below (Courtesy of Dr. S. Beresh of 

Sandia National Laboratory, NM) where particles seeded in a Mach 2.5 flow undergo a shock produced 

by a 15
o
 wedge. Severe optical distortion and flow tracking deficiencies produced in the shock boundary 

are apparent from the image close-up (b).  In this case, the particle field was generated with mineral oil 

‘smoke generator’ having diameters between 0.2 and 0.3 m that were introduced into the main flow 

stream with slotted tubes inserted from a pressurized vessel into the main flow stagnation chamber. 
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a)       b)  

 

The capability of a particle to follow the flow is characterized using the ‘relaxation’ (also termed 

‘reaction’, ‘response’, or ‘decay’) time (p).  By definition of a step response, a particle experiencing a 

step change in velocity (such as a strong normal shock) will take a time of p to reach 63.2% of its final 

asymptotic value.
287

 It has been studied extensively and quantified for aggressive conditions such as those 

of high turbulent fluctuations and high-speed flow phenomena.
293,317-332  

For example, it has been found 

that the relaxation time of the particle mainly depends on the square of its main dimension size (e.g. 

diameter) and only linearly on its density, and is given by the Stokes drag
287

 which for compressible flow 

can be modified as
293

: 

 

          𝜏𝑝 = 𝑑𝑝
2 𝜌𝑝

18𝜇𝑓
(1 + 2.7𝐾𝑛𝑑),                                    (8.1) 

 

where  𝜏𝑝 is the particle response time, dp is the diameter, p is the particle density, f  is the fluid dynamic 

viscosity, and Knd is the Knudsen number (ratio of molecular mean free path and the dp) that takes into 

account the rarefaction effects in compressible flows.  Variants of this relation can be found in the 

literature for various high-speed conditions.
322-329,332

 The Stokes number, ratio of the time response of the 

particle with respect to the time scale of the flow (St = p / f ) is then used to compare the particle-to-flow 

tracking capability. For example, particles having St < 0.1 have been typically deemed appropriate for 

proper flow tracking in many examples.
287,293,332

   The distances that particles travel during the response 

time (flow velocity * p) can then be compared to the spatial resolution of the PIV system (the size of the 

interrogation windows) to establish whether or not the flow phenomena can be resolved.  

Figure 8.2 Particle field undergoing a shock in a Mach 2.5 flow (a) and close-up image of the shock 

region (b) (Courtesy of Dr. S. Beresh of Sandia National Laboratories, NM) 
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As an illustrative example, in a study of flow phenomena at Mach 5,
332

 the computed response times 

and traveled distances of TiO2 particles of 0.26 m diameter were estimated to be 4.5 s and 3.5 mm for a 

6-deg oblique shock flow condition, and 0.75 s and 0.4 mm for a normal shock flow condition.  In the 

study, the PIV spatial resolution was ~ 2 mm; the oblique shocks thus appeared smoothed and the 

resolution of the normal shock was limited by the data spatial resolution rather than by the particle 

response time. 

8.4. Examples of PIV Measurements 

A variety of PIV experiments for high-speed flow applications have been performed during last few 

decades,
292-300,304-308,330-332

 and few illustrative examples are shown in this section. They highlight the fact 

that PIV remains a powerful diagnostic technique albeit with the challenges of particle seeding. PIV has 

been notably demonstrated in: 

 Mach 2 : oblique shocks, expansion waves, and supersonic wakes,
294,295,305,306,328

  

 Mach 4 : supersonic flows,
323 

 

 Mach 5 : compression ramps, turbulent boundary layers, and ‘unstart’ processes in inlet-

isolator of scramjet/ramjet models at Mach 5 blowdown wind tunnels,
330,331,332

  

 Mach 4.5 – 6 : freestreams, wedges, ramps, and spheres in shock tunnels and shock 

tubes
296,297,298,299,300,330,331

 and in wedge flow in hypersonic blowdown tunnels,
296,297

 

 Mach 7 flows in hypersonic facilities,
293,329 

  

 Mach 1.4 heated jet flow with ‘tomographic PIV’ arrangement displaying the 3D 

reconstruction of Mach disks, oblique shock, etc.
304

 

 High-repetition rate ‘pulse-mode’ PIV applications to supersonic jets such as  

o Mach 3.73 jet in a transonic cross flow,
308

  

o Mach 1.56 jet.
307

 

 

8.4.1. Mach 2 Examples 

Illustrative examples demonstrated in turbulent boundary layer and corner flow studies under Mach 2 

conditions
305,306

 are shown in Fig. 8.3.  The study was performed in the University of Tennessee Space 

Institute high-speed wind tunnel and with a goal of understanding flow in supersonic and hypersonic 

vehicle components having non circular internal flow paths and corners in various junctures of the 

vehicle. In this study, both standard PIV and Stereoscopic-PIV were performed to gather two- and three-

components of velocity in a plane.  The seeding particles used were TiO2 which were entrained from a 

fluidized bed seeder.  The estimate of time response for these particles was p = 2.6 s and a Stokes 

number of St = p / f ~ 0.09, suggesting appropriate flow tracking. The PIV settings were similar to those 

shown and described schematically in Fig. 8.2 with 100 mJ/pulse at 25Hz.  The sample images of Fig. 8.3 
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show streamwise velocity contours and in-plane vectors with streamlines identifying counter-rotating 

corner vortices underneath the high-speed flow.  

 

8.4.2. Mach 5 Examples 

Examples from experiments under Mach 5 conditions typical of hypersonic flight and scramjet/ramjet 

inlets conducted in blowdown wind tunnels
330-332

 are shown here.  The flows included compression 

ramps, turbulent boundary layers, and ‘unstart’ processes in inlet-isolator of scramjet/ramjet models.  

In this study, the flow structure of the fully supersonic flow within the inlet-isolator model and the 

flow structure during the unstart process, as revealed with the PIV measurements, were described. The 

PIV system consisted of four cameras set up for panoramic plan-view measurements. The seeding system 

particles were TiO2 with a manufacturer specified primary diameter of 0.02 m that was deemed larger 

due to agglomeration. The particles were seeded upstream of the stagnation chamber using a fluidized-

bed seeder system driven by compressed nitrogen.  The wide-field PIV system utilized a typical PIV 

system similar to that of Fig. 8.2 with four cameras in parallel, 140 mJ/pulse lasers, and at 10Hz.  The 

flow was imaged and illuminated through a fused-silica test section window and the acrylic isolator 

ceiling. The particle response was calculated to be 7 s for freestream flow, 4.5 s for an oblique shock 

generated by a Mach 5 flow over a 6-deg wedge, and 0.75 s for a Mach 5 normal shock. Uncertainty 

analysis was performed accounting for hardware related uncertainties including image registration, laser 

pulse separation time, camera/image calibration, etc. and for data reduction/processing uncertainties such 

as the window interrogation algorithms, etc. The highest uncertainties were about ±17 m/s for the mean 

streamwise velocities near the wall and decreased to about ±6 m/s outside the boundary layer. 

Samples of PIV results are shown in Figures 8.4 and 8.5 for the mean streamwise Mach number 

contours for the fully supersonic long isolator and for the instantaneous flow during the unstart.  PIV was 

Figure 8.3 Instantaneous streamwise velocity, U, with in-plane vectors and streamlines highlighting 

counter-rotating corner vortices underneath the high-speed flow obtained with Stereo PIV. Reproduced 

with permission of the authors.
305 
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succesful in resolving complex flowfields such as the boundary layer, compression ramp shock 

reflections, and expansion fans and reflections in various regions of interest.   

  

 

(a) 

 
(b) 

8.4.3. Mach 4.5-6 Examples 

Illustrative examples of supersonic flows at Mach 4.5-6 obtained at the shock tube Laval nozzle 

facility in the French-German Institute of Saint-Louis (ISL) are shown in Fig. 8.6.
298-300

 The shock-tunnel 

is a transient wind-tunnel facility with short testing times of a few milliseconds and high supersonic 

velocities in the km/s.  In these examples, Mach flows of 4.5 and 6 are displayed for 20
o
 wedge flows side 

by side.  The PIV settings were similar to those shown and described schematically in Fig. 8.2 with 150 

Figure 8.4  Mean Mach number contours for supersonic long isolator. Reproduced with permission of the 

authors.
332

 

Figure 8.5 Instantaneous flow field during ‘unstart’ at t = 5 ms:  a) velocity vectors and b) M contours.
332

  

Reproduced with permission of the authors.
332
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mJ/pulse lasers.  The laser pulse separation between two consecutive frames was 0.5 s, and solid 

particles (TiO and AlO) with nominal diameters of 0.3 m were used for seeding. For this diameter the 

relaxation time was calculated to be 2.1 s. A cyclone separator was added to prevent agglomeration by 

filtering the larger particles, and a seeding density of ~0.15% corresponding to ~10,000 particles/mm
3
 

was reported corresponding to 10-20 particles within interrogation windows. However, the particle 

density varied considerably due to strong density gradients in the flow. Shown in Fig. 8.6 are a raw 

particle image sample and a PIV velocity field for the two Mach numbers. It is apparent that particle lag 

has an effect on the PIV results.  For example, approaching at ~1500 m/s and with an expected 2.1 s 

time lag the particles would travel ~3 mm before recovering the flow speed.  With some optical 

distortions expected to contribute, it is apparent that particle lag is a main contribution to the interface’s 

relatively rough appearance and that the shock wave is not straight and shows jittering.  

 

  

  

Figure 8.6 Raw images and PIV results for Mach 4.5 (left) and Mach 6 (right) flow over a 20° wedge. 

Reproduced with permission of the authors.
298,299,300 
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8.4.4. Mach 7 Flow Examples 

At the higher Mach 7, a PIV sample from a double-compression ramp is shown in Fig. 8.7.  The 

investigation was performed at the Hypersonic Test Facility Delft.
293 

 A shock-shock and shock-wave-

boundary-layer interaction using PIV was studied using TiO2 particles with diameter of 400 nm and with 

relaxation time of 2 s.  The PIV settings were similar to those shown and described schematically in Fig. 

8.2 with 400 mJ/pulse lasers.  Seeding non-uniformity is noticeable and contribute to smearing.  As in the 

previous example, the particle lag is also a big factor and a main contribution to the interface resulting 

unevenness. 

  

8.4.5. Tomographic PIV Example at Mach 1.4 

The superior dimensional capabilities of tomographic PIV were demonstrated at NASA GRC in an 

underexpanded Mach 1.4 heated jet flow for acoustics research, and the 3D reconstruction of the Mach 

disk and oblique shock were rendered.
304

  The layout of the system comprised four cameras arranged at an 

angle of 45
o
 between each of them.  Laser power was 400 mJ/pulse and the field of view 180 x 180 x 10 

mm
3
 with spatial resolution of 0.875 mm

3
.  It is noteworthy that tomographic data reduction and 

reconstruction results in significantly higher computational effort, data storage, and processing. In this 

experiment, flow seeding was 400 nm aluminum powder dispersed from an ethanol solution that 

stabilizes and prevents powder agglomeration.  In the sample shown in Fig. 8.8, color contours displaying 

velocity magnitude in the centerline are overlaid with streamwise slices through the Tomo-PIV data sets. 

Tomo-PIV representation with underexpanded features and the shock cells is apparent.  

 

Figure 8.7 Double Ramp Flow PIV samples. Hypersonic Flow Mach 7 at Hypersonic Test Facility Delft 

(HTFD). Reproduced with permission of the authors.
293
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8.4.6. High-Repetition Rates ‘Burst-mode’ PIV Example 

This final example demonstrates recent advances in time-resolved particle image velocimetry (TR-

PIV). Here, a supersonic nitrogen jet with a design Mach number of 3.73 exhausted into a transonic 

crossflow (Fig. 8.9).  Using a ‘pulse-burst’ laser, velocity field time resolved frames of compressible 

turbulence events were captured.
308

  Requirements of the high-speed flows demand higher energy at faster 

pulse rates than conventional PIV. A quasi-continuous burst-mode laser (QuasiModo-1000, Spectral 

Energies, LLC) with both diode-pumped and flashlamp-pumped Nd:YAG amplifiers was used to produce 

a high-energy pulse train at 532 nm. The pulse-burst laser generates up to 10.2 ms bursts every 8 s with a 

maximum 532 nm pulse energy of 500 mJ at 5 kHz and 20 mJ pulse energy at its current maximum 

repetition rate of 500 kHz.  Images were acquired using two high-speed CMOS cameras (Photron SA-

X2), which have a full framing rate of 12.5 kHz and an array of 1024 × 1024 pixels at this speed. Their 

windowing function allows increasing framing rate by sampling a smaller region of the imaging array. In 

this case, each camera operated at maximum of 50 kHz with an array of 640 × 384 pixels.  

Figure 8.8 Underexpanded M 1.4 jet flow tomographic PIV measurements sample. Reproduced with 

permission of the author.
304
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Two cameras were used side-by-side to extend the field of view in the streamwise direction to track 

the convection of turbulent eddies using two-component PIV as shown in the sample of Fig. 8.9. Seeding 

was provided by mineral oil smoke generator and time response was reported adequate (St <0.1).  

Cameras had to be canted 5
o
 due to the camera body, but it was estimated that this did not create a 

perspective bias on the velocity vectors by sensitivity to the out-of-plane velocity component, and 

Figure 8.9 Sequence of velocity fields with vorticity extracted from a 2.5 ms burst of 58 velocity fields 

acquired at 25 Hz, measuring a Mach 3.7 jet issuing into a Mach 0.8 crossflow. Reproduced with 

permission of the authors.
308
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calculations estimated that the maximum induced error in the streamwise component was no more than 

2%. 

A limitation of the ‘pulse-burst’ is that it has a duty cycle that hinders measurement of moderate 

frequency phenomena (say 100 Hz).  One really needs to use multiple measurement systems to resolve all 

the time scales. Nonetheless, this example represents the use of TR-PIV in a high-speed ground-test 

facility and shows the power to investigate the temporal development of turbulent structures in 

compressible flows. 

8.5. Conclusions for PIV 

Particle Image Velocimetry (PIV) technique applied to high-speed velocimetry was described and 

illustrative examples shown.  The capability of PIV systems for accurately measuring instantaneous and 

average flow field velocities in two-dimensional (2D) planes, three-dimensional (3D) volumes, and also 

provide time-resolution has been demonstrated for a variety of high-speed compressible flows.  

Nonetheless, particle seeding remains the primary challenge, which is especially difficult in the harsh 

conditions and environments encountered in high-speed flows. The general requirements for a robust 

seeding system include delivery of a prescribed amount of particle concentration with uniformity (to yield 

enough data while not perturbing the flow), necessity to follow the flow velocity as accurately as possible 

(typically by requiring small diameter), requisite to be bright light scatterers, and the need to be non-

hazardous and non-contaminating.  These requirements typically have to be addressed in the design on a 

case-by-case basis.  
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9. Emission Spectroscopy 

9.1. Introduction to Emission Spectroscopy 

Perhaps the simplest of optical diagnostic techniques is that of emission spectroscopy, also referred to 

as Optical Emission Spectroscopy (OES).  All that is required to perform optical emission spectroscopy in 

principal is a spectrometer and a detector.  The primary limitation, however, is that the system being 

measured must be luminous, i.e. producing some form of light that may be collected and analyzed.  This 

requirement typically limits the application of emission spectroscopy to plasmas or combustion flows.  In 

the context of hypersonic flows, the enthalpies must be high enough to be producing excited states of 

molecules, atoms, and/or ions that emit light as these states relax.  The enthalpies required then will be 

gas dependent; typical minimum levels may be around 2 MJ/kg for CO2, 20 MJ/kg for Air and 360 MJ/kg 

for H2.  These enthalpies may be obtained in high enthalpy facilities such as shock tubes or arc jets, 

however once the flow is expanded, the subsequent cooling and reduction in density causes the emission 

to drop precipitously and the nozzle flow is often no longer luminous.  The application of emission 

spectroscopy in nozzle flows is therefore limited.  The flow may become luminous again when it 

impinges upon the test article, and emission spectroscopy is often employed in this regime.  Emission 

spectroscopy has been employed in various hypersonic facilities, including free flight ballistic 

ranges,
333,334

 arc jets,
335-350

 and shock tubes/tunnels.
351-368

  A general review of the processes behind 

emission spectroscopy including both a theoretical background and specific examples of a radially 

symmetric flow volume is given by Danehy, et al.
13

 Details of intensity calibration, optical imaging, and 

resolution limitations, with specific application to shock tubes, has been discussed by Cruden.
351

  A 

detailed discussion of the atomic and molecular processes involved in emission can be found in the works 

of Herzberg.
369-371

 

The data obtained from emission spectroscopy comes in the form of an intensity as a function of 

wavelength.  Because different atoms and molecules emit light at different wavelengths, this spectrum 

may be used to identify species present.  Furthermore, the emission spectrum depends on the specific 

states of the species involved in the emission.  Therefore, the spectrum contains information about the 

population of electronic, vibrational, and rotational states of the species.  Without performing any 

calibration of the spectral intensity, it is usually possible to fit the shape of a spectrum to obtain rotational 

and vibrational temperatures.
372

  Often, the ratios of uncalibrated lines may be used to obtain relative 

populations of states or species.  This ratiometric treatment of the emission spectrum is the underlying 

principle of actinometry.
373

  With an intensity calibration, additional information can be obtained from 

emission spectroscopy.  Calibration is performed by measuring a source of known radiance and ratioing 

the counts from the reference source and the flow under test.  With the intensity converted to a value of 
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radiance, the intensity may be related to the absolute density of the excited states of the molecule or atom 

responsible for emission.  This relationship is often determined through the use of a spectroscopic 

modeling software, such as NEQAIR
374

 or SPECAIR
375

, which contains the Einstein coefficients and 

dipole moments necessary for relating intensity to density.  Relating the excited state densities to ground 

state densities requires some assumption regarding the temperature or Boltzmann distribution of the 

species.  Another common application of emission spectroscopy is to evaluate the intensity of the 

radiation for a given shock condition.
351

  This measurement is relevant for determining the heat flux 

impinging on a space vehicle or test article when radiation is a significant means of heating within the 

flow. 

The enthalpies at which radiation may be detected also depend upon the wavelengths being observed.  

In order for a particular species to produce emission, it must undergo a transition that possesses a dipole 

moment.  The use of OES for vibrational transitions in homo-nuclear molecules is consequently 

precluded, but is still possible for many electronic transitions for atoms and molecules.  Heteronuclear 

molecules may emit from vibrationally excited states, requiring somewhat lower energy for excitation, 

with emission observed at higher wavelength, typically in the mid-infrared.  Many hypersonic CO2 

emission studies are performed in this wavelength regime.  Emission in the visible wavelength range is 

due to the transitions between electronic states of atoms and molecules or the recombination of electrons 

and ions (so-called bound-free continuum), and requires higher enthalpies to excite.  At the highest 

enthalpies, significant emission may be observed in the vacuum ultraviolet region ( ~ 100-200 nm or 6-

12 eV), which involves transitions between widely separated electronic states.   

9.2. Basic theory of Emission Spectroscopy 

The basic principal of emission spectroscopy is as follows.  The flow naturally emits radiation in all 

directions.  The facility must be equipped with some form of viewport or optical fiber feedthrough 

through which some of this radiation passes.  The light that passes through this port is collected through 

the optics and focused onto the slit of a spectrometer.  The most common type of spectrometer is a grating 

spectrometer.  In this type of spectrometer, the slit passes light into the spectrometer, which is then 

collimated through a focusing optic onto the grating.  The grating has a ruled pattern such that the light 

diffracts, and the angle at which light reflects off the grating is a function of its wavelength (Fig. 9.1).  In 

this way, the incoming emission is separated into its spectral content.  The collimated light is then 

refocused by a second optic inside the spectrometer onto a detector.  The focused light will be in the 

shape of the slit, but separated spatially by wavelength.  The detector can be a point detector, such as a 

photomultiplier tube, in which case the spectrometer is more accurately referred to as a monochromator, 

since it is measuring only one wavelength (more precisely, a narrow range of wavelengths) of light.  In 
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this case, a second slit would be on the monochromator exit plane so that wavelengths at different 

diffraction angles are blocked from the detector.  More commonly a linear array, such as a photodiode 

array (PDA), is used.  A linear array has multiple pixels oriented in the direction of diffraction, and hence 

each pixel measures different wavelengths.  In the case of an imaging spectrometer, the direction along 

the slit may be used as a spatial dimension, and a 2D array, such as an intensified charge coupled device 

(ICCD) may be used with each pixel row representing one position in the flow, and the column 

representing the wavelength.  This arrangement requires the focusing optics to perform a one-to-one 

mapping of position in the flow to a height on the slit, and the spectrometer’s internal optics to perform a 

one-to-one mapping of a position of the slit to a position on the array. 

 

It is often preferred to use some form of optics (lenses, mirrors) to focus the light from the source onto 

the spectrometer.  Without an optic, the spectrometer would measure a broad region of the flow (Fig. 

9.1a.)  The focusing optics may be used to measure a much narrower region of the flow (Fig. 9.1b), or if 

the optics are designed to be imaging, a linear cross-section of the flow may be measured onto a two-

dimensional detector.  In some cases, the light may be directed from the facility through fiber optics to the 

spectrometer when windows are not directly accessible to an optical bench (Fig. 9.1c).  In any of these 

cases, the measurement is line-of-sight integrated; that is, the emission is collected along the optical path 

and therefore is the accumulation of signal over the entire linear distance traversed by the optical path.  

Moreover, the signal is collected over a conical volume (see Fig. 9.1) that is defined by both the 

spectrometer and external optics, so is an average of signal within this volume.  Thus, every measurement 

Figure 9.1.  Illustration of the principal of optical emission, (left) without focusing optic, (center) with 

focusing optic, (right) with fiber optic and collimating attachment. 
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has some finite spatial resolution, extending in multiple directions, which must be considered.  If it is 

desired to obtain spatial resolution in two or three dimensions, additional methods may be employed.  A 

simple approach is to translate the spectrometer or optics and perform measurements at multiple 

positions.  This strategy is only possible in steady and repeatable flows, and would not be applicable to 

impulse facilities.  Another example is filtered imaging, where the image is focused onto a 2D array 

without an intervening spectrometer and band-pass filters are used to select a specific range of 

wavelengths.
367

  In both of these cases, two-dimensional spatial resolution is obtained but the data is still 

line of sight integrated.  In the case of radially symmetric flow, Abel inversion
341,344

 or “onion peeling”
347

 

may be used to extract data with spatial resolution in the radial direction.  A more advanced inverse 

analysis method involves using multiple mirrors or spectrometers to image the flow from multiple 

directions and use a Radon transform or other inverse methods to convert the data into three 

dimensions.
349

  This idea is in principle very similar to computed tomography (CT) imaging.  All of these 

inverse methods require the flow to be optically thin.  “Optically thin” refers to the case where the 

emission is not absorbed anywhere in the flowfield, and hence the intensity is proportional to the 

pathlength.  Furthermore, all inverse methods are ill-posed mathematical problems with multiple valid 

solutions, and it is typically necessary to perform some regularization, or smoothing, to prevent noise 

accumulation in the inversion process.  Generally speaking, the more views through the flow, the higher 

the spatial resolution for inverse methods.  Thus, spatial resolution is improved at the expense of cost, 

time, or complexity. 

9.3. Examples of Emission Spectroscopy  

One of the earliest examples of emission spectroscopy in a hypersonic flow involved the 

characterization of the radiative gas cap over a free flying ballistic test article.
333

  In tests conducted 

between 1959-1965, 1-3 cm diameter blunt body models were launched using light gas guns into an 

enclosed ballistic range that was evacuated and filled with air at pressures between 2 x 10
-4

 and 2 x 10
-1
 

atm.  While the launched articles could achieve velocities of up to 8.8 km/s, in some tests a shock tube 

was used to launch a counter-current shock wave at velocities up to 3.6 km/s.  This method produced 

relative velocities up to 12.4 km/s (77 MJ/kg) which exceeds escape velocities and produced a radiating 

gas cap that would be comparable or brighter than those encountered in the Apollo program, albeit at 

much smaller length scales.  Results reported spanned the range of 5.4-12.4 km/s.  Similar measurements 

were made in test gases consisting of CO2 and N2 at velocities between 5-8 km/s and 4 x 10
-3

 to 8 x 10
-2

 

atmospheres to simulate entries to Mars and Venus.
334

  In these measurements, a spectrometer was not 

utilized.  Instead, a series of eight photomultiplier tubes, each equipped with a narrow-band optical filter 

was used to measure the intensity of the light in spectral ranges spanning from 200-1000 nm.  In this way, 
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a crude spectrum of the emitted radiation could be constructed and compared against models for radiative 

heating.  These “narrow-band radiometers” were arranged at the same axial location, and different 

azimuthal positions.  The radiometers measured the intensity of emitted light as a function of time.  A slit 

assembly installed on the radiometer ensured that the measurement was limited to one axial location.  As 

the model passed over the slit assembly, a peak in the radiometer signal could be observed, corresponding 

to the radiating gas cap in front of the article.  After the model passed from the view of the slit, a second 

peak could be observed, corresponding to radiation in the wake of the model.  In this case, the wake 

radiation was only seen with a polycarbonate model, and was attributed to luminous species ablated from 

the test article.   

Numerous applications of emission spectroscopy to arc jet flows have been reported.  As an example, 

a schematic of the IHF arc jet at NASA Ames is given in Fig. 9.2.  The high enthalpy flow is produced in 

an arc heated mixture of argon and air.  The gas then enters a mixing (aka plenum or settling) chamber 

where additional air may be added to tailor the condition (i.e. enthalpy).  The flow is expanded through a 

converging-diverging nozzle into the test chamber to produce a high enthalpy flow of sufficient diameter 

for testing.  This flow then impinges upon a test article to simulate the environment of planetary entry.  A 

bow shock is formed around this test article.  Optical emission characterizations have been performed at 

all stages of the flow, including the arc column,
335 

within the plenum chamber,
342,347

 in the freestream,
339-

341,350 
and in the shock layer.

336,339-341,343
 

 

This review will focus specifically on emission characterizations in the NASA Ames Arc Jets.  

Terrazas-Salinas, et al. measured atomic lines within the arc column to estimate gas temperature.
335

  

Babikian, et al. used the ratio of atomic N atom radiation to that of molecular species (N2
+
, NO) to 

estimate enthalpy in the shock layer over a test article.
336

  Park, et al. measured rotational and vibrational 

temperatures in both the free stream and shock layer by fitting spectra from NO, N2
+
, and atomic oxygen 

Figure 9.2.   Schematic of an arc-jet facility 
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lines.
339-341

  Donohue, et al used emission spectroscopy to measure the electronic temperature in the 

plenum chamber.
342

  Raiche and Driver utilized “modern” spectroscopy equipment to monitor ablating 

test articles.
343

  Winter, et al. performed characterizations of radial uniformity in the plenum chamber,
347

 

as well as atomic/molecular non-equilibrium in the freestream.
350

   

The work of Park, et al. sought to characterize the optical emission properties in the 20 MW 

Aerodynamic Heating Facility (AHF) at NASA Ames.  A diagram of their spectroscopic setup is shown 

in Fig. 9.3.  A 2.5 cm length of the flow was imaged with 4 to 1 magnification onto a mask placed in front 

of the spectrograph.  The mask consisted of alternating opaque regions, 0.75 mm long, and open regions 

of 0.127 mm length.  Given the system magnification, the flow was imaged at 3 mm intervals over ~0.5 

mm regions as a result of the masking.  Eight such regions were measured over the 2.5 cm length imaged.  

The light that passed through the mask was then refocused onto the spectrometer and collected on a 2D 

CCD array.  The primary purpose of the mask was to better isolate the spatial regions of the flow to 

individual locations on the CCD.  The effect of the mask on the optical acceptance cone is shown in Fig. 

9.3c.  By using the mask, cones from the adjacent regions did not intersect within the luminous region of 

the flow and thus each measured region is independent of its neighbors.  In the absence of such a mask, 

the data obtained will be a convolution of the spatially resolved emission with the spatial resolution 

function of the optics and spectrometer.
351

  The mask effectively truncates the convolving spatial 

resolution function.  While the presence of such a convolving function does not invalidate the 

measurement in any way, it must be accounted for in subsequent analysis.   
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(a) 

 

(b) 

 

(c) 

  

 

While the figure shows the spectroscopy being performed on the bow shock over the model surface, 

the model was also rotated out of the flow so that the freestream itself, without model interaction, could 

be measured.  Due to the weakness of the freestream radiance, exposure times of 30s were required, and 

only spectra attributed to the NO molecule were obtained between 200-280 nm.  Such a spectrum is 

shown in Fig. 9.4a.  While two electronic states (so called  and  bands) of NO were observed emitting, 

only one vibrational quanta was identified, such that each band originated from the ′=0 state.  The 

authors utilized the NEQAIR code to simulate five of the NO bands in Fig. 9.4 and obtain a correlation 

between the width of the band and its rotational temperature.  The vibrational temperature could not be 

determined in the freestream since there was only one vibrational level observed, although an upper 

bound of 950 K could be assigned based upon the simulations and this observation.  The rotational 

temperature did not vary with position over the 2.5 cm region resolved, and is shown in Fig. 9.4b as a 

Figure 9.3.  (a) Experimental set up for characterization of the high enthalpy flow in the arc jet.  (b) 

Mask used to define imaged areas.  (c) Optical acceptance cone created by the mask.
339,340

 Reprinted 

with permission of the authors. 



 

105 

 

 

straight line.  Also shown in the same plot are the temperatures (electronic, rotational, vibrational) 

inferred by emission spectroscopy in the presence of a model.  Temperatures obtained from the 5 bands 

ranged from 860-990 K with uncertainties from 60-100 K at a high pressure condition, and from 570-630 

K with uncertainties of 35-55 K at the low pressure condition.  Simultaneous laser-induced fluorescence 

(LIF) measurements were obtained at 1640 ± 400 K and 820 ± 250 K for these two respective conditions.  

The discrepancy between LIF and emission spectroscopy temperatures was not well understood, although 

it is noted that LIF was performed on the centerline only, while the emission data is line-integrated.  

Attempts to resolve the discrepancy through Abel inversion were inconclusive.
341

 

 

 

The work of Raiche and Driver in the early 2000’s was the first OES application in the large 60 MW 

Interaction Heating Facility (IHF) arc jet.  It was also the first to make use of miniaturized fiber-coupled 

spectrometers to obtain spectral data at high rates and with high spatial resolution.  The schematic of the 

optical setup is given in Fig. 9.5, including a simultaneous laser scattering measurement.  The fiber optic 

beam used a collimating optic such that it imaged a cylindrical volume, 2 mm in diameter.  To verify the 

quality of the optic, the researchers measured a tungsten lamp source at different locations from the 

“field-of-view centerline”, i.e. perpendicular to the optical path.  The data in the figure shows that the 

beam image is approximately Gaussian, but the width of the beam depends upon the wavelength being 

measured.  This distortion is known as chromatic aberration and is not uncommon for lens-focused 

systems.  The resolution was not characterized at positions away from the facility center-line (i.e. along 

the optical path.) 

Figure 9.4.  (a) Spectrally resolved data obtained in the AHF freestream. (b) Temperature estimated 

from emission measurements both with and without (i.e. freestream) a test article.
339,340

 Reprinted with 

permission of the authors. 
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Figure 9.5.  Schematic of the spectroscopic setup of Raiche and Driver (left) and measured spatial 

resolution profile (right).
11

 Reprinted with permission of the authors. 

  

The study utilized an Ocean Optics S2000 fiber coupled spectrometer, which still nearly reflects 

today’s state of the art.  The size of the S2000 (and similar) spectrometers is several centimeters on a side, 

as opposed to more traditional spectrometers that are on the order of 30-100 cm.  There is some trade-off 

in imaging quality and spectral resolution with these spectrometers, however the performance is still quite 

reasonable.  Raiche and Driver were able to measure 1024 wavelength points at a resolution of 4.5 nm 

(note that wavelength resolution is typically determined by the slit width, and not the pixel spacing – thus 

the resolution often spans multiple pixels).  The useful wavelength measurement range of the instrument 

was from 300-900 nm, and spectra were collected at intervals of 10-512 ms.  Figure. 9.6 shows sample 

data collected from the spectrometer.  The images have been corrected for relative spectral sensitivity of 

the instrument based upon measurement of a radiometric standard.  Figure 9.6a shows the spectrum 

obtained with a copper calibration model.  The black bars and lines are useful for feature identification, 

representing typical relative intensities and wavelengths of different radiating species observed in the 

flow.  Significant features are identified from N2, N2
+
, and atomic N and O.  Some impurities from Cu and 

CN are also identified.  Figure 9.6b shows the spectral measurements as a function of time in the flow, 

where the spectra are plotted together to produce a greyscale image with time on one axis and wavelength 

on the other.  Since the optical position is fixed, and the test article is recessing as the measurement is 

conducted, the measurement gradually moves from imaging the test article itself (black region) to the 

shock layer and then out into the freestream (white regions).  (Note: black regions, including many of the 

atomic lines, are saturated.)  Spectral cuts at two positions are shown in Fig. 9.6c.  While the spectral 

features within the shock layer are similar to those observed on the copper calibration article, the region 

outside the shock (i.e. freestream) is characterized by a continuum radiation that may be fit with a Planck 

function at approximately 3840 ± 20 K, which is close to the model surface temperature.  In this case, 
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radiation in the freestream was attributed to particles created on the model and ejected into the freestream 

(i.e. spallation) as no significant freestream radiation was observed in the absence of a model.  

(a)                                               (b)                                                    (c) 

 

Figure 9.6.  Spectroscopy traces obtained in the arc jet experiment.  (a) Uncalibrated data obtained on a 

copper calibration model, (b) greyscale image showing multiple spectra (vertically) taken as a function of 

time  (horizontally), (c) spectra from two positions in the grey-scale image, showing the emission 

measured within the bow shock and upstream of the shock (i.e. freestream), due to contamination by 

particles ejected from the model).
343

 Reprinted with permission of the authors. 

 

Optical emission spectroscopy measurements within shock tubes have been used to obtain 

fundamental data on atoms and molecules
376

 and molecular reactions rates,
377,378

 as well as signatures of 

radiative heating for planetary entry.
351,353,356

  A schematic of a general shock tube or tunnel is given in 

Fig. 9.7 along with where optical emission measurements are typically performed.  In the operation of a 

shock tube, the high pressure driver gas that creates the shock wave behaves much as a blunt body does 

when it is entering an atmosphere.  That is, the driver does not mix with the driven gas due to the short 

time scales involved, rather it “pushes” and compresses the driven gas in front of it, forming a shock wave 

that is heated by the change in kinetic energy.  This incident shock may be studied as a one-dimensional 

reacting flow by performing emission spectroscopy through windows in the shock tube.  The shock tunnel 

is distinguished from a shock tube in that the gas is allowed to exit the tube section prior to analysis.  In 

the non-reflected shock tunnel, the gas exits freely and is measured before the free expansion alters the 

state of the gas significantly.  In an expansion tunnel, this shock would exit through a nozzle at the end of 

the tube.  In a reflected shock tunnel, the shock is reflected off an endwall, with some flow allowed to 

expand through an opening in the endwall plate.  In both the expansion and reflected shock tunnels, this 

nozzle flow enters a test section then impinges upon a test article, setting up a shock system on the model 

(a bow shock, for a blunt model).  This bow shock has been analyzed by optical emission in several 

studies.
362-367

  However, the condition of the nozzle flow is typically inferred from 0D or 1D models and 

can be a significant source of uncertainty to the measurement.
379,380

  The nozzle flow is typically 

characterized for uniformity via Pitot rake measurements, but very few studies attempt to directly 
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measure the thermochemical state of the nozzle flow, or determine its implications upon the properties of 

the bow shock.
364,381

 

 

The Electric Arc Shock Tube (EAST) at NASA Ames has been used extensively to study radiation and 

reactions in incident shocks.  Independent tests at University of Queensland (X2),
358

 CUBRC (LENS 

XX),
361

 and JAXA (HVST)
357

 have corroborated the data obtained in EAST.  The emission spectroscopy 

measurements in EAST use imaging spectroscopy in order to obtain data that is resolved along the 

streamwise axis of the shock tube.  Schematics of the optical set up in EAST are shown in Fig. 9.8, with 

the optical paths unfolded.  Though the schematic depicts the optics as lenses, mirrors are actually used 

for focusing and imaging to avoid chromatic aberration (described above).  Three possible optical designs 

are shown.  Early EAST tests utilized a telescopic optical design (Fig. 9.8a), where the lines of sight enter 

the tube at an angle to its axis.
382

  For a long optical path or small shock tube diameter, this optical design 

may be sufficient.  However, for larger diameter tubes (as in the EAST 60 cm tube), this angle causes a 

loss of spatial resolution due to the line integrated nature of emission spectroscopy.  This loss of 

resolution is apparent in the radiance profile at the shock front shown below the sketch in Fig. 9.8a.  

Modern EAST tests utilize a telecentric optic design (Fig. 9.8b), which ensures lines of sight all pass 

through the tube perpendicular to its axis.
383

  The spatial resolution in this design is limited by the width 

of the conical volume defined by the collection optics.  In optics, the F/# is the ratio of the focal distance 

to the diameter of the collection optic, which defines the shape of the cone.  Because the diameter of the 

cone is inversely proportional to F/#, the amount of light collected will go approximately as (1/F)
2

, while 

the spatial resolution is proportional to 1/F.  Thus, it is desirable to minimize F/# while still meeting some 

minimum desired resolution.  In the case of the 10 cm diameter EAST tube, the mirrors are oversized so 

that the optical diameter is determined by the spectrometer.  The focal length is the spectrometer focal 

Figure 9.7.  Schematic of a generic shock tube/tunnel.  Emission spectroscopy is generally performed on 

the incident shock, the shock just as it exits the shock tube, or the bow shock formed on a test article.   
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length times the magnification of the optics, so that the effective F/# is the product of the spectrometer 

F/# and the magnification factor.  For the 60 cm EAST tube, the resolution will be 6× worse for the same 

optical F/#, due to the increased optical pathlength.  The loss of spatial resolution was sufficiently severe 

to warrant installation of an aperture to increase the F/# (Fig. 9.8c) at the expense of signal intensity.  In 

order to mitigate the (1/F)
2
 loss in intensity, a rectangular aperture was used instead of a circular aperture, 

with the narrow side of the aperture oriented in the axial direction of the tube.  This orientation has the 

effect of reducing the optical collection volume in the resolved direction (parallel to the tube axis), but not 

altering the volume in the direction perpendicular to the tube axis, which is presumed to be uniform.  The 

intensity thus scales as 1/F rather than 1/F
2
.  The data in the bottom row of Fig. 9.8 show improvements in 

spatial resolution manifest as a more sudden risetime in the signal trace as the shock wave passes by the 

measurement station.  

 

 

(a)                                              (b)                                                    (c) 

 

 

 

 

 

  

                          (d)                                                         (e)                                                      (f)         

Figure 9.8.  Schematic of optical arrangements in the shock tube, with spatial resolution increasing left 

to right.  (a) Telescopic optics, (b) telecentric optics, (c) telecentric optics with aperture.  Shown below 

each image (d)-(f) is the radiance measured at the shock front. 
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Data collected in the EAST creates a map of intensity versus wavelength and position in the tube.  A 

sample raw data plot is shown in Fig. 9.9a.  This raw data is normalized by a calibration response 

function, Fig. 9.9b, which is obtained by measuring the output of an integrating sphere that has been 

calibrated against a radiometric standard.  The resultant data is shown in Fig. 9.9c.  Cross-sections of the 

3D plot taken in the vertical direction provide a measurement of radiance versus position.  Cross-sections 

in the horizontal direction provide the spectral radiance at that position.  Four such images are collected 

simultaneously on EAST, all looking at the same position in the tube, but differing azimuthal angles.  A 

cross section from two similar shots, comprising eight separate spectral measurements, are co-plotted in 

Fig. 9.9d to show the spectral radiance at equilibrium.  Much of the apparent noise below 200 nm are 

actually atomic lines measured at higher resolution than the rest of the plot.  Tests in EAST have been 

performed with different gas mixtures to simulate entries into Mars,
352

 Venus,
352

 Earth,
384

 Titan,
385

 and 

Saturn.
386

  The spatial dependence of the spectra has been used to infer and update reaction rates and 

radiation models for several of these atmospheres.
387-389
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Deeper analysis of the emission data can provide flowfield parameters such as species number 

densities, electron densities, and rotational, vibrational and electronic temperatures.  When radiation is 

optically thick, the radiation is described by the Planck (blackbody, =1) function, which has temperature 

as its only dependent parameter.  Three examples of optically thick radiation measured in the EAST are 

shown in Fig. 9.10.  Figure 9.10a shows a measurement of CO radiation in the vacuum ultraviolet (VUV).  

The low wavelength end of the spectrum is fit with a Planck function.  Fig. 9.10b shows CO2 radiation in 

the mid-wave infrared (MWIR), where the upper limit of the radiation is also fit with a Planck Function.  

Figure 9.9. Sample of data obtained in the EAST facility. (a) Raw data from spectrometer, (b) calibration 

response function, (c) calibrated data with horizontal and vertical cross-sections, and (d) cross-sections in 

“equilibrium” region obtained from eight such spectral images. 
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Finally, Fig. 9.10c shows an optically thick Hydrogen line, where the flat top of the line is described by a 

Planck function.  (Note: it is often not possible to see the Planck limit of atomic lines due to finite 

resolution of the spectrometer.  The case shown in Fig. 9.10c is atypical.  The absence of a clear Planck 

limit does not mean a line is optically thin!)  The Planck function has a very strong temperature 

sensitivity, therefore temperatures determined in this way are typically very accurate, often to better than 

±100 K.  For all these cases, fits are performed for data that is calibrated to absolute radiation units.  A 

relative fit could be performed for uncalibrated data, but requires the data to span a large enough 

wavelength range to make the temperature dependence significant, and the accuracy is reduced 

accordingly.  For a flowfield in thermal non-equilibrium, this temperature is the effective temperature 

between the states involved in the transition.  For the CO VUV case, it is an electronic transition, and 

hence can be thought of as an electronic temperature.  The CO2 MWIR transition is vibrational, and so 

represents the vibrational temperature.  For the Hydrogen line, it is a transition between the n=2 and n=3 

states of the Hydrogen atom, so the temperature is the effective temperature between these states, which 

would be the electronic temperature if the states are Boltzmann distributed. 

 

Figure 9.10.  Determination of temperature from Planck Limiting (Blackbody) curves. (a) CO in vacuum 

ultraviolet, (b) CO2 in mid-infrared, (c) Hydrogen in visible. 

 

  Rotational and vibrational temperatures may be obtained by fitting molecular bands.  This method 

requires some kind of spectroscopic model.  While scripts to perform such calculations may be written by 

the enterprising researcher, codes such as NEQAIR,
374

 SPECAIR,
375

 or LIFBASE
390

 may also produce 

these spectra (the ability to fit the data, however, is not necessarily built in).  Example fits of CN and C2 

spectra are shown in Fig. 9.11.  The accuracy of these methods are lower than the Planck method, with 

typical errors on the order of 10%.  For hypersonic flows approaching 10,000 K, the error could be as 

much as ±1000 K.  This method also requires the flow be Boltzmann distributed in both rotational and 

vibrational modes, and that the instrument lineshape be characterized accurately.  Furthermore, it 

technically obtains the temperature of the excited state, which is not necessarily equilibrated with the 

ground state.  Some examples of large differences between fit emission temperatures and mean 

rovibrational temperatures exist in the literature.
391

  However, in many cases it may work well and Fig. 
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9.11c has overlaid temperatures obtained with both of the methods described (rovibrational and Planck 

fits) with translational temperatures obtained from tunable diode laser absorption spectroscopy (TDLAS) 

in the same test.
392

  

 

Emission intensities are proportional to the density of excited states responsible for emission.  Thus, it 

is sometimes possible to determine excited state density from emission data and/or produce Boltzmann 

plots from which the ground state density may be inferred.
348

  Another density that may be inferred from 

emission data is electron density, for flows that are sufficiently ionized.  The electron density is extracted 

from high resolution line-width measurements when the lineshape is dominated by the Stark effect.
368

  

The lineshape cannot necessarily be resolved for all lines without very powerful spectrometers.  

Hydrogen lines are however typically very accessible with Stark broadening and often present as an 

Figure 9.11. Example of spectral fits used to extract rotational and vibrational temperatures (a) CN 

molecule, (b) C2 molecule.  (c) Compilation of temperature extracted by Planck Method, rovibrational 

fitting and tunable diode laser spectroscopy in a single test as a function of distance along the viewport 

(streamwise).  
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impurity in flows.  A few lines of Nitrogen and Oxygen were also identified for use in the EAST facility.  

Some example fits of these lines are shown in Fig. 9.12, along with a plot of electron densities obtained 

over a range of test conditions in EAST.
368

 

 

9.4. Conclusions for Emission Spectroscopy 

In summary, optical emission spectroscopy is a simple, yet powerful technique.  In spite of the 

simplicity of the application, there are still many subtleties to the implementation to be considered, some 

of which were discussed here.  While the implementation may be relatively straightforward, significant 

analysis complexity may follow to obtain meaningful interpretation of the data.  In general, optical 

emission probes only the excited levels of molecules and atoms, such that intervening assumptions are 

required to translate this to ground state data.  OES has been used to analyze multiple flow temperatures, 

Figure 9.12.  Sample lineshape fits of Hydrogen (top left) and Nitrogen (top right) to obtain electron 

number density.  The bottom plot shows the range of electron densities obtained for different conditions 

in EAST, and comparison to equilibrium values.
368

  Reprinted with permission of the authors. 
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species number densities, particle-laden flows, and radiative heating magnitude.  One limitation of the 

technique is the requirement for a luminous flow, making it inapplicable in vibrationally/electronically 

cold freestreams.  Another limitation of the method is its path-averaged nature, though this can be 

overcome by measuring from multiple views and performing tomographic reconstruction. 
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10.  Conclusions 

As developers of hypersonic vehicles begin to rely increasingly on computational methods to design 

and optimize hypersonic vehicles, there is an increased emphasis on validating these codes.  Critical to 

validating the codes are the inflow and boundary conditions.  While some of these conditions can be 

measured with conventional intrusive probes, non-intrusive diagnostics show promise to measure detailed 

spatial and temporal information about the thermodynamic state and velocity of hypersonic facility 

flowfields.  This manuscript reviewed the state of the art in non-intrusive flowfield measurement 

techniques for studying hypersonic freestream flows. 

 To conclude this manuscript a set of summary tables is provided in Tables 10.1-10.3.  They are sorted 

alphabetically by measurand (the parameter being measured) rather than by technique so that different 

techniques measuring each property can be compared.  The first table (10.1) shows a variety of different 

measurands while the 2
nd

 (10.2) describes temperature measurement techniques and the final table (10.3) 

shows velocity measurement methods.  In the tables, the following abbreviations are used:  

FPST = Free Piston Shock Tunnel 
ST = Shock Tube or Shock Tunnel 
BD = Blowdown Wind Tunnel 
AJ = Arcjet 
ET = Expansion Tube 
UJ = Underexpanded Jet 

Below, some observations are drawn about the measurement techniques in view of the range of 

measurements needed (and requirements for measuring freestream perturbations) in the introductory 

section.    

While reviewing the data in these tables and the ensuing discussion one should keep in mind that this 

study was not intended to be exhaustive, but indicative of some of the literature.  An exhaustive review 

was beyond the scope of this work.  Rather, the tables provides a rough idea of the state of the art and 

some initial references to begin a search if considering doing such measurements in the future. 

A first observation is that a wide variety of measurands relevant to hypersonic freestream flows can be 

measured with non-intrusive measurement techniques.  Comparing the mean conditions shown in Tables 

10.1-3 they generally overlap well with the operating conditions shown in Table 1.1 in the introduction.  

That is, measurement techniques exist to measure most of the operating conditions typically occurring in 

different types of hypersonic wind tunnels.  But many of these techniques have not yet been applied to or 

adopted by large-scale industrial and government wind tunnels.  This would be recommended for future 

work.   

A second observation from the tables is that there seem to be far more velocity and temperature 

measurement methods in the literature than other parameters.  This is not surprising considering the 
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importance of these two parameters, temperature and velocity, which capture thermal and kinetic energy 

of hypersonic flows.  However it is also possible that these parameters are easier to directly measure than 

other parameters such as gas pressure which is a less extractable quantity. 

Regarding temperature measurements, several different methods have been developed to identify the 

different temperatures (e.g., translational, rotational, vibrational, electronic) that occur in nonequilibrium 

flows commonly associated with hypersonic facilities.  No one measurement technique can provide all of 

these temperatures, so to get the complete understanding of a flow – even a freestream flow – multiple 

techniques are required.  In terms of temperature measurement accuracy and precision, numbers in the 

range of 3-20% are typical with the exception of fs/ps CARS which can measure temperature with an 

accuracy and precision of just a few percent or less.   This high precision be attributed to high signal-to-

noise ratio data and very stable lasers, at least in the fs/ps regime.   

Regarding velocity, there are a wide variety of techniques that have been developed.  Some of these 

are highly facility specific such as nitric oxide PLIF which works especially well in facilities having 

naturally present NO (or facilities where NO can be seeded into the flow).  Velocity measurements 

generally break down into two categories: Lagrangian tracking techniques (MTV, PIV) and Doppler-shift 

based methods.   Based on the data in the table it is clear that the Lagrangian methods are more precise 

than their Doppler shift counterparts which are roughly 5x less precise on average.  MTV typically 

measures at a point, line or a coarse grid of points or lines while Doppler shift methods can provide much 

higher spatial resolution with a velocity measurement at each pixel.  Like with many of these techniques, 

different measurement needs may be addressed better by one or the other of these capabilities.  While PIV 

is more intrusive than the other velocimetry techniques described in this manuscript (owing to the need 

for seeding particles) it is much further developed, allowing three- and four-dimensional reconstruction of 

velocity fields even with commercially off the shelf hardware and software.  

In general, regarding accuracy determination, it can be challenging to compare a non-intrusive 

measurement to a known “truth” to establish accuracy.  Typically one would compare the new 

measurement technique to an “accepted standard” measurement.  That may work in a laboratory jet flow 

or flame where multiple optical and/or conventional techniques and even simple calculations can all be 

compared.  But in an actual hypersonic facility flow there is sometimes no available comparison data.  Or 

the existing data was obtained with a perturbative probe, which has its’ own complications.  In such cases 

it may be possible to perform the measurement in a well-understood hypersonic flow and then to compare 

with CFD simulations of this flow.  Another approach is to plan to use multiple measurement techniques 

that use different physical principles to measure the same parameter in a hypersonic flow (for example 

using both MTV and PIV to measure velocity).   The difference between these measurements (assuming 
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that they are both carefully implemented and validated in lower-velocity flows) could be an indication of 

measurement accuracy.  Similarly, a caution about “precision” estimates in the literature: these can report 

the combined effect of both the technique measurement and the flow unsteadiness.  So reported numbers 

could overestimate the actual instrument measurement precision.  

A final observation can be made by comparing the data in Table 1.2 with the data in Tables 10.1-3.  

Whereas Table 1.2 shows that fluctuations less than 1% are commonly expected in hypersonic freestream 

flows, we see very few measurement techniques that can resolve such small fluctuations.  Ideally 

measurement techniques would have 5x better precision than the value they are trying to measure to 

provide good measurement resolution.  So, measurement techniques with precision on the order of 0.1% 

or better are needed.  Only a handful of measurement techniques are close to the needed precision: PIV, 

FLDI, fs/ps CARS, some MTV techniques and a PLIF density measurement technique with precisions on 

the order of 1%.  None met the required 0.1% precision required to fully resolve small freestream 

fluctuations in conventional tunnels and existing nonintrusive measurements are found to be especially 

unsuitable to resolve fluctuations in quite tunnel freestream flows.   Still this is an opportunity for future 

work.   
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Measurand Technique Facility 
Type 

Mach # Seeding Species 
Probed 

Accuracy Precision Mean 
meas. 

Spatial 
Resolution 

Sample 
Time 

Meas. 
Rate 

Ref. 

Concentration Absorption BD N/A None CO, CO2   5% 0.05-0.06  Path-
integrated 

0.17 ms up to 6 
kHz 

67 

Concentration ns CARS BD 2 None N2, O2, 
C2H4, 
CO2, 

CO, H2 

-- -- 500-1300 K 0.075 mm 
x 1 mm 

10 ns 20 Hz 281 

Density PLIF BD 10 I2 I2 -- 1% 3e17 
mol/cm

3
 

0.3 mm 200 ns 30 Hz 105 

Density PLIF BD 2.07 I2 I2 -- -- 0.34 kg/m
3
 0.1 mm -- -- 106 

Density PLIF UJ 4.5 Kr Kr 7% -- 0.02 kg/m
3
 0.047 mm -- -- 107 

Density ()  FLDI FPST   None air   0.5%   10 mm 10 ns 100 MHz 178 
Electron 
Number Density 

Emission ST 30 0-2% H2 H, N, O 20%  -- 1e16 cm
-3

 1 cm 1 us single 
pulse 

368 

Flow Visualiz. PLIF AJ 5 None NO, O -- 3%, 10%  -- 1 mm  -- 10 Hz 83 

Flow Visualiz. PLIF FPST 7.9 None NO -- 15.0%  -- 0.25 mm  100 ns 10 Hz 92 

Flow Visualiz. PLIF AJ 5 None NO -- --  -- 0.1 mm  1 us 10 Hz 94 

Mole Fraction PLIF ST 2.7 None NO -- 10% 0.5 0.28 mm  400 ns 10 Hz 102 

Mole Fraction PLIF ET 2.3 CH3 CH3 -- -- 0.5 0.096 mm  400 ns -- 103 

Mole Fraction PLIF BD 8.2 NO NO -- 25% 0.07 0.1 mm 75 s 10 Hz 104 

Number Density Absorption ST 30 None CO, CO2 30% --  5.00E+16 5 mm 0.5 us 2 MHz 392 

Number Density LIF AJ 2 None None 20%  -- 8.00E+15 --  180s --  393 

Number Density Emission AJ 4 None N 10% --  1e16 cm
-3

 2 cm  -- --  350 

Pressure fs/ps CARS gas cell -- None air <7.5% 2% 0.4-3 atm 0.1 x 1 mm <1 ns 1-10 kHz 255 
Pressure FRS BD 2 None air 4-5% --  yes 0.285 mm  --  -- 205 

Pressure PLIF BD 3 NO NO 10-30% -- 2.25 kPa 0.25 mm 217 ns 10 Hz 108 

Pressure PLIF UJ -- I2 I2 4% 5% 100 kPa 0.23 mm  60 s 3 Hz 109 

Pressure PLIF UJ 1.5 I2 I2 -- 8% 135 Torr 0.16 mm 250 ms 4 Hz 110 

Pressure Absorption FPST -- None CO2 --  14% 350 Pa Integrated 20 ms 600 Hz 18 

 

Table 10.1   Summary of some assorted measurement techniques’ specifications, listed in alphabetical order by measurand. 
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Measurand Technique Facility 
Type 

Mach # Seeding Species 
Probed 

Accuracy Precision Mean 
meas. 

Spatial 
Resolution 

Sample 
Time 

Meas. 
Rate 

Ref. 

Temperature ns CARS BD, 
Vitiated 

2 None air 2-5% 3-5% 300-2500 K 0.1 x 1 mm 10 ns 10-30 Hz 272 

Temperature ns CARS BD 2 None air -- -- 500-1300 K 0.1 x 1 mm 10 ns 20 Hz 266 

Temperature fs/ps CARS flames -- None air 1-5% 1-1.5% 500-2500 K 0.1 x 1 mm 10-100 
ps 

1 kHz 243 

Temperature fs/ps CARS Plasma, 
detonation 

-- None air -- 2% 300-2500 K 
(5000 K Tvib) 

0.1 x 1 mm 10-100 
ps 

1 kHz 259 

Temperature fs/ps CARS flames -- None air -- -- 300-2000 K 0.035 x 1 
mm 

100 ps 10 Hz 246 

Temperature FRS BD 2 None air 2%  -- yes 0.285 mm --  -- 205 

Temperature Absorption ST 30 None None 10%  -- 7000 K 5 mm 0.5 us 2 MHz 392 

Temperature Emission AJ 2 None None 10%  -- 800 K 0.5 mm 30 s --  341 

Temperature LIF AJ 2 None --  25%  -- 1600 K  -- 180s --  393 

Temperature LIF AJ 2 None None 15%  -- 1200 K 0.5-3 mm 100 ns 20 Hz 394 

Temperature Absorption AJ N/A None O*  -- 4% 7260 K Integrated 1 s 100 Hz 78 

Temperature Absorption ST N/A None CO  -- 4% 7400 K Integrated 20 us 50 kHz 37 

Temp. (Elec.) Emission ST 30 None CO 3%  -- 7000 K 2 mm .1-1 us single 
pulse 

352 

Temp. (Rot) PLIF FPST -- None NO -- -- 700 K -- -- -- 95 

Temp. (Rot) PLIF BD 8.2 NO NO 3% 4% 300 K 0.1 mm  75 s 10 Hz 98 

Temp. (Rot) PLIF BD 4.7 NO2 NO2 -- 5% 56 K 0.028 mm  3 us 10 Hz 96 

Temp. (Rot) PLIF UJ 12 I2 I2 -- -- 11.5 K 0.1 mm  60 s -- 97 

Temp. (Rot) PLIF FPST 7 None NO -- 4% 450 K 0.11 mm  650 ns -- 99 

Temp. 
(Rot/Vib) 

Emission ST 30 None None 10%  -- 7000 K 2 mm 0.1-1 
us 

-- 352 

Temp. 
(Trans) 

LIF AJ 4.8 None O -- ~100% 1000 K 0.09 mm  --   -- 101 

Temp. (Vib) PLIF FPST 7 None NO -- 4% 785 K 0.11 mm  650 ns -- 99 

 

Table 10.2  Summary of some temperature measurement techniques’ specifications.  
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Measurand Technique Facility 
Type 

Mach # Seeding Species 
Probed 

Accuracy Precision Mean 
meas. 

Spatial 
Resolution 

Sample 
Time 

Meas. 
Rate 

Ref. 

Velocity MTV BD 10 NO2 NO2 2.80% 1% 1400 m/s 0.1 x 2 
mm  

2 us 10 Hz 395 

Velocity MTV BD 5 NO2 NO2 --  1.6-2.5% 719 m/s 0.1 x 2 
mm 

2 us 500 kHz 152 

Velocity MTV (HTV) BD, 
Vitiated 

2 H2O H2O 1.20% 1-2.2% 680 m/s 0.1 x 2 
mm 

10-
100us 

10 Hz 141 

Velocity MTV (KTV) BD 14 Krypton Krypton 2-3% 0.2-
1.25% 

1920 m/s 0.1 x 5 
mm 

4 us 10 Hz 168 

Velocity MTV (FLEET) BD 14 None air 1% <0.5% 1920 m/s 0.1 x 10 
mm 

7 us 1 kHz 169 
 

Velocity PIV BD 2.01 TiO2 -- 2%  -- 500 m/s 3 mm 1 us 25 Hz 305, 
306 

Velocity PIV BD 5 TiO2 -- 0.50% 2% 700 m/s 1 mm 1 us 10 Hz 332 

Velocity PIV ST 4.5 - 6 TiO2 -- --  2% 1600 m/s 6 mm 1.5 us 10 Hz 293 

Velocity PIV BD 7 TiO2 -- 1% 2% 1040 m/s 1 mm 1 us 10 Hz 293 

Velocity Tomo-PIV Jet 1.4 Al2O3 --  -- 1%-4% 750 m/s  2 mm -- 2 Hz 304 

Velocity TR-PIV SJTCF 1.4 Oil --  -- 2% 300 m/s 0.7 mm --  50 kHz 308 

Velocity FRS BD 2 None air 2-3% -- -- 0.285 mm --   -- 205 

Velocity CC-DGV BD 1.65 alumina -- 3% -- 600 m/s 0.05 mm 2 min   --  196 

Velocity IRS BD -- None air -- 3% --  0.1 mm 30 ns 10 Hz 396 

Velocity PLIF  AJ 5 None NO -- 13% 500 m/s 0.1 mm 72 s 10 Hz 94 

Velocity PLIF  FPST 7 None NO -- 5% 1300 m/s 0.17 mm 50 ns N/A 111 

Velocity PLIF FPST 10 None NO -- 10% 500 m/s 0.5 mm 200 ns N/A 112 

Velocity LIF  AJ 4.8 None O -- 11% 3600 m/s 0.09 mm -- -- 101 

Velocity LIF  AJ N/A None N, O -- 10% 5000 m/s 0.5 mm -- -- 113 

Velocity LIF  UJ 5 I2 I2 -- 2% 718 m/s -- 15 min N/A 114 

Velocity LIF  AJ 2 None None 5%  -- 4000 m/s 0.5-3 mm 100 ns 180 sec 394 

Velocity Absorption ST N/A None K --  4.5% 4450 m/s Integrated 100 us 10 kHz 26 

 

Table 10.3 Summary of some velocity measurement techniques’ specifications.  
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